Skip to main content
Log in

iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lack of requisite genetic variation in cultivated species has necessitated systematic collection, documentation and evaluation of wild Cicer species for use in chickpea variety improvement programs. Cicer arietinum has very narrow genetic variation, and the use of a wild relative in chickpea breeding could provide a good opportunity for increasing the available genetic variation of cultivated chickpea. Genetic diversity and the relationship of 71 accessions, from the core area of chickpea origin and domestication (Southeastern Turkey), belonging to five wild annual species and one cultivated species (Cicer arietinum) were analysed using iPBS-retrotransposon and ISSR markers. A total of 136 scorable bands were detected using 10 ISSR primers among 71 accessions belonging to 6 species, out of which 135 were polymorphic (99.3 %), with an average of 13.5 polymorphic fragments per primer, whereas iPBS detected 130 bands with 100 % polymorphism with an average of 13.0 bands per primer. C. echinospermum and C. pinnatifidum were the most diverse among species, whereas C. arietinum exhibited lower polymorphism. The average polymorphism information contents (PIC) value for both marker systems was 0.91. The clustering of the accessions and species within groups was almost similar, when iPBS and ISSR NeighborNet (NNet) planar graphs were compared. Further detailed studies are indispensable in order to collect Cicer germplasm, especially C. reticulatum, from southeastern Turkey particularly, from Karacadağ Mountain for preservation, management of this species, and to study their genetic diversity at molecular level. This study also demonstrates the utility and role of iPBS-retrotransposons, a dominant and ubiquitous part of eukaryotic genomes, for diversity studies in wild chickpea and in cultivated chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

iPBS:

Inter primer binding site

ISSR:

Inter simple sequence repeat

PCR:

Polymerase chain reaction

CTAB:

Cetyl trimethyl ammonium bromide

LTR:

Long terminal repeats

PIC:

Polymorphism information content

References

  • Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  Google Scholar 

  • Ahmad F (1999) Random amplified polymorphic DNA (RAPD) analysis reveals genetic relationships among the annual Cicer species. Theor Appl Genet 98:657–663

    Article  CAS  Google Scholar 

  • Ahmad F, Slinkard AE (1992) Genetic relationships in the genus Cicer L. as revealed by polyacrylamide gel electrophoresis of seed storage proteins. Theor Appl Genet 84:688–692

    Google Scholar 

  • Ahmad F, Gaur PM, Slinkard AE (1992) Isozyme polymorphism and phylogenetic interpretations in the genus Cicer L. Theor Appl Genet 83:620–627

    Article  Google Scholar 

  • Alavi-Kia SS, Mohammadi SA, Aharizad S, Moghaddam M (2008) Analysis of genetic diversity and phylogenetic relationships in Crocus genus of Iran using inter-retrotransposon amplified polymorphism. Biotechnol Biotechnol Eq 22:795–800

    CAS  Google Scholar 

  • Baloch FS, Kurt C, Arıoğlu H, Ozkan H (2010) Assaying of diversity among soybean (Glycin max (L.) Merr.) and peanut (Arachis hypogaea L.) genotypes at DNA level. Turk J Agric For 34:285–301

    Google Scholar 

  • Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M, Fraser J (2008) Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLoS One 3(1):e1402

    Article  PubMed  Google Scholar 

  • Biswas KM, Baig MNR, Cheng YJ, Deng XX (2010) Retrotransposon based genetic similarity within the genus Citrus and its relatives. Genet Resour Crop Evol 57:963–972

    Article  CAS  Google Scholar 

  • Branco CJS, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, Mistura CC, Carvalho FIF, Oliveira CA (2007) IRAP and REMAP assessments of genetic similarity in rice (Oryza sativa). J Appl Genet 48(2):107–113

    Article  PubMed  Google Scholar 

  • Chen DX, Li LY, Peng R, Qu XY (2006) Genetic diversity of Coptis chinensis germplasm based on ISSR analysis. China J Chin Mater Med 23:1937–1940

    Google Scholar 

  • Compertpay G, Baloch FS, Kilian B, Ülger AC, Özkan (2012) Diversity assessment of Turkish maize landraces based on fluorescent labelled SSR markers. Plant Mol Biol Rep 30:261–274

  • De Riek J, Calsyn E, Everaert I, Van Bockstaele E, De Loose M (2001) AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor Appl Genet 103:1254–1265

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Gribbon BM, Pearce SR, Kalendar R, Schulman AH, Paulin L, Jack P, Kumar A, Flavell AJ (1999) Phylogeny and transpositional activity of Ty1- copia group retrotransposons in cereal genomes. Mol Gen Genet 261:883–891

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • Iruela M, Rubio J, Cubero JI, Gil J, Millan T (2002) Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor Appl Genet 104:643–651

    Article  PubMed  CAS  Google Scholar 

  • Kafkas S, Ozkan H, Ak BE, Acar I, Atlı HS, Koyuncu S (2006) Detecting DNA polymorphism and genetic diversity in a wide Pistachio germplasm: comparison of AFLP and RAPD markers. J Amer Soc Hort Sci 131:522–529

    CAS  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1:2478–2484

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–771

    Article  CAS  Google Scholar 

  • Kalendar R, Antonius K, Smykal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121:1419–1430

    Article  PubMed  CAS  Google Scholar 

  • Labdi M, Robertson LD, Singh KB, Charrier A (1996) Genetic diversity and phylogenetic relationships among the annual Cicer species as revealed by isozyme polymorphism. Euphytica 88:181–188

    Article  CAS  Google Scholar 

  • Ladizinsky G, Adler A (1975) The origin of chickpea as indicated by seed protein electrophoresis. Israel J Bot 24:183–189

    Google Scholar 

  • Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:16021603

    Article  Google Scholar 

  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BAR/M retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334

    Article  PubMed  CAS  Google Scholar 

  • Muminovic J, Merz A, Melchinger AE, Lubberstedt T (2005) Genetic structure and diversity among radish varieties as inferred from AFLP and ISSR analyses. J Am Soc Hortic Sci 130:79–87

    CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:282–292

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nguyen TT, Taylor PWJ, Redden RJ, Ford R (2004) Genetic diversity estimates in Cicer using AFLP analysis. Plant Breed 123:173–179

    Article  CAS  Google Scholar 

  • Ocampo B, Venora V, Errico A, Singh KB, Saccardo F (1992) Karyotype analysis in the genus Cicer. J Genet Breed 46:229–240

    Google Scholar 

  • Onofrio DC, Lorenzis DG, Giordani T, Natali L, Cavallini A, Scalabrelli G (2010) Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genet Genome 6(3):451–466

    Article  Google Scholar 

  • Ozer S, Karaköy T, Toklu F, Baloch FS, Kilian B, Ozkan H (2010) Nutritional and physicochemical variation in Turkish kabuli chickpea (Cicer arietinum L.) landraces. Euphytica 175:237–249

    Article  CAS  Google Scholar 

  • Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheat. Theor Appl Genet 110:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Ozkan H, Willcox G, Graner A, Salamini F, Kilian B (2010) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol. doi:10.1007/s10722-010-9581-5

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flawell AJ (1996) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315

    PubMed  CAS  Google Scholar 

  • Pearce SR, Harrison G, Heslop-Harrison JS, Flavell AJ, Kumar A (1997) Characterization and genomic organisation of Ty1- copia group retrotransposons in rye (Secale cereale). Genome 40:617–625

    Article  PubMed  CAS  Google Scholar 

  • Qiu YX, Fu CX, Wu FJ (2003) Analysis of population genetic structure and molecular identification of Changium smyrnioides and Chuanminshen violaceum with ISSR markers. China J Chin Mater Med 28:598–603

    CAS  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Gen Genet 271:91–97

    Article  CAS  Google Scholar 

  • Rajesh PN, Tullu A, Gil J, Gupta VS, Ranjekar PK, Muehlbauer FJ (2002) Identification of an STMS marker for double-podding gene in chickpea. Theor Appl Genet 105:604–607

    Article  PubMed  CAS  Google Scholar 

  • Rao LS, Usha Rani P, Deshmukh PS, Kumar PA, Panguluri SK (2007) RAPD and ISSR fingerprinting in cultivated chickpea (Cicer arietinum L.) and its wild progenitor Cicer reticulatum Ladizinsky. Genet Resour Crop Evol 54:1235–1244

    Article  CAS  Google Scholar 

  • Saeidi H, Rahiminejad MR, Heslop-Harrison JR (2008) Retroelement insertional polymorphisms, diversity and phylogeography within diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) Sub-taxa in Iran. Ann Bot 101:855–861

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of inter gene retrotransposons of maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as molecular markers in plants. Method Mol Biol 260:145–175

    CAS  Google Scholar 

  • Shan F, Clarke HC, Plummer JA, Yan G, Siddique KHM (2005) Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theor Appl Genet 110:381–391

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK (2008) Chickpea improvement: role of wild species and genetic markers. Biotechnol Genet Eng Rev 25:267–314

    Article  PubMed  CAS  Google Scholar 

  • Sudupak MA (2004) Inter- and intra-species inter simple sequence repeat (ISSR) variation in the genus Cicer. Euphytica 135:229–238

    Article  CAS  Google Scholar 

  • Sudupak MA, Akkaya MS, Kence A (2002) Analysis of genetic relationships among perennial and annual Cicer species growing in Turkey using RAPD markers. Theor Appl Genet 105:1220–1228

    Article  PubMed  CAS  Google Scholar 

  • Sudupak MA, Akkaya MS, Kence A (2004) Genetic relationships among perennial and annual Cicer species growing in Turkey assessed by AFLP fingerprinting. Theor Appl Genet 108:937–944

    Article  PubMed  CAS  Google Scholar 

  • Talebi R, Jelodar NAB, Mardi M, Fayaz F, Furman BJ, Bagheri AM (2009) Phylogenetic diversity and relationship among annual Cicer species using random amplified polymorphic DNA markers. Gen Appl Plant Physiol 35:03–12

    CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps; unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tayyar RI, Waines JG (1996) Genetic relationships among annual species of Cicer (Fabaceae) using isozyme variation. Theor Appl Genet 92:245–254

    Article  Google Scholar 

  • Tayyar RI, Lukaszewski AJ, Waines JG (1994) Chromosome banding patterns in the annual species of Cicer. Genome 37:656–663

    Article  PubMed  CAS  Google Scholar 

  • Toker C (2009) A note on the evolution of kabuli chickpea as shown by induced mutations in Cicer arietinum Ladizinsky. Genet Resour Crop Evol 56:7–12

    Article  Google Scholar 

  • Vairinhos F, Murray DR (1983) The seed proteins of chickpea; comparative studies of Cicer arietinum, C. reticulatum and C. echinospermum (Leguminosae). Plant Syst Evol 142:11–22

    Article  CAS  Google Scholar 

  • Wu HF, Li ZZ, Huang HW (2006) Genetic differentiation among natural populations of Gastrodia elata (Orchidaceae) in Hubei and germplasm assessment of the cultivated populations. Biodivers Sci 14:315–326

    Article  Google Scholar 

  • Xu F, Sun M (2001) Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent inter simple sequence repeat markers. Mol Phyl Evol 21:372–387

    Article  CAS  Google Scholar 

  • Yeh FC, Yang R, Boyle TJ, Ye Z et al (2000) PopGene32, microsoft windows-based freeware for population genetic analysis. Version 1.32. Molecular biology and biotechnology centre. University of Alberta, Edmonton

    Google Scholar 

  • Zhou YQ, Jing JZ, Li ZY, Zhang BH, Wang TL, Jia JF (2005) SSR identification of genetic diversity of Rehmannia glutinosa in Huai zone. Chinese Tradit Herb Drugs 36:257–262

    CAS  Google Scholar 

  • Zietkiewicz E, Rafaliski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplication. Genomics 20(2):176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Özkan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Primers names, annealing temperature and banding pattern of iPBS primers (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andeden, E.E., Baloch, F.S., Derya, M. et al. iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. J. Plant Biochem. Biotechnol. 22, 453–466 (2013). https://doi.org/10.1007/s13562-012-0175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-012-0175-5

Keywords

Navigation