Skip to main content
Log in

Mapping QTL for seed yield and canning quality following processing of black bean (Phaseolus vulgaris L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTL) analysis was conducted to identify QTL for seed yield and color retention following processing of a recombinant inbred line (RIL) black bean population. A population of 96 RILs were derived from the cross of black bean cultivars ‘Jaguar’ and 115M and evaluated in replicated trials at one location over 4 years (2004–2007) in Michigan. A 119-point genetic map constructed using simple sequence repeat (SSR), sequence related amplified polymorphism (SRAP), target region amplified polymorphism (TRAP) and phenotypic markers spanned fifteen linkage groups (LG) or 460 cM of the bean genome. Fourteen QTL for yield and color retention in four environments were identified by composite interval mapping on six linkage groups. A major QTL SY10.2J115 for seed yield was identified on LG B10 with additional QTL on B3, B5, and B11. Color retention following processing was associated with loci on B1, B3, B5, B8, and B11. 115M possessed positive alleles for yield, but negative alleles for color retention. Some QTL for yield and color retention co-localized with regions identified in previous studies while others, particularly for color retention, were unique. Additional QTL for agronomic and canning quality traits were detected and individual contributions to future black bean breeding are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CIAT:

Centro Internacional de Agricultura Tropical

CIM:

Composite interval mapping

IBL:

Inbred backcross line

MAS:

Marker assisted selection

QTL:

Quantitative trait loci

RIL:

Recombinant inbred line

SCAR:

Sequence characterized amplified region

SRAP:

Sequence related amplified polymorphism

SSR:

Simple sequence repeat

TRAP:

Target region amplified polymorphism

References

  • Acosta-Gallegos JA, Kelly JD, Gepts P. (2007). Pre-breeding and genetic diversity in common bean (Phaseolus vulgaris). Proceedings of international plant breeding symposium, Ciudad de México. Crop Sci 47(S3):S44–S59

  • Beattie AD, Larsen J, Michaels TE, Pauls KP (2003) Mapping quantitative trait loci for a common bean (Phaseolus vulgaris L.) ideotype. Genome 46:411–422

    Article  PubMed  CAS  Google Scholar 

  • Beaver JS, Osorno JM (2009) Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168:145–175

    Article  CAS  Google Scholar 

  • Beaver JS, Rosas JC, Myers J, Acosta J, Kelly JD, Nchimbi-Msolla S, Misangu R, Bokosi J, Temple S, Arnaud-Santana E, Coyne DP (2003) Contributions of the Bean/Cowpea CRSP to cultivar and germplasm development in common bean. Field Crops Res 82:87–102

    Article  Google Scholar 

  • Beebe S, Tohme J, Nienhuis J, Pedraza F, Rengifo J, Tovar E, Islam A (2004) Studies in Phaseolus germplasm diversity: a review of work at CIAT. Annu Rep Bean Improv Coop 47:33–34

    Google Scholar 

  • Beebe SE, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorous limited and favorable environments. Crop Sci 48:582–592

    Article  Google Scholar 

  • Benchimol LL, Campos T, Carbonell SAM, Colombo CA, Chioratto AF, Formighieri EF, Gouvea LRL, Souza AP (2007) Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican and Andean origins using new developed microsatellite markers. Genet Resour Genet Resour Crop Evol 54:1747–1762

    Article  CAS  Google Scholar 

  • Benninger CW, Hosfield GL (2003) Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J Agric Food Chem 51:7879–7883

    Article  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitan-Solis E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006a) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006b) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  PubMed  CAS  Google Scholar 

  • Bliss FA (1993) Breeding common bean for improved nitrogen fixation. Plant Soil 152:71–79

    Article  Google Scholar 

  • Brick MA, Grafton KF (1999) Improvement of medium-seeded race Durango cultivars. In: Singh S (ed) Common bean improvement in the twenty-first century, 223–253. Kluwer, Dordrecht, the Netherlands

    Google Scholar 

  • Bushey SM, Hosfield GL (2007) Absorbance of the soak water to predict canning quality. Annu Rep Bean Improv Coop 50:39–40

    Google Scholar 

  • Buso GSC, Amaral ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean Phaseolus vulgaris. Mol Ecol Notes 6:252–254

    Article  CAS  Google Scholar 

  • Campos T, Benchimol LL, Carbonell SAM, Chioratto AF, Formighieri EF, Pereira de Souza A (2007) Microsatellites for genetic studies and breeding programs in common bean. Pesq Agropec Bras 42(4):589–592

    Article  Google Scholar 

  • Checa OE, Blair MW (2008) Mapping QTL for climbing ability and component traits in common bean (Phaseolus vulgaris L.). Mol Breed 22:201–215

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Freyre R, Skroch PW, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson WC, Llaca V, Nodari RO, Pereira PA, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Gomez OJ, Blair MW, Frankow-Lindberg BE, Gullberg U (2004) Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Sci 44:1412–1418

    Article  CAS  Google Scholar 

  • Grisi MCM, Blair MW, Gepts P, Brondani C, Periera PAA, Brondani RPV (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706

    PubMed  CAS  Google Scholar 

  • Haley SD, Miklas PN, Afanador L, Kelly JD (1994) Random amplified polymorphic DNA (RAPD) marker variability between and within gene pools of common bean. J Am Soc Hort Sci 119:122–125

    CAS  Google Scholar 

  • Hanai LR, Campos T, Camargo LEA, Benchimol LL, Souza AP, Melotto M, Carbonell SAM, Chioratto AF, Consoli L, Formighieri EF, Siqueira MVBM, Tsai SM, Vieira MLC (2007) Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome 50:266–277

    Article  PubMed  CAS  Google Scholar 

  • Hosfield GL, Uebersax MA (1980) Variability in physico-chemical properties and nutritional components of tropical and domestic dry bean germplasm. J Am Soc Hort Sci 105:246–252

    CAS  Google Scholar 

  • Hosfield GL, Uebersax MA, Isleib TG (1984) Seasonal and genotypic effects on yield and physico-chemical seed characteristics related to food quality in dry, edible beans. J Am Soc Hort Sci 109:182–189

    Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Bio Rep 21:289–294

    Article  CAS  Google Scholar 

  • Kelly JD (2004) Advances in common bean improvement: some case histories with broader applications. Acta Hort (ISHS) 637:99–122

    Google Scholar 

  • Kelly JD, Afanador L, Cameron LS (1994) New races of Colletotrichum lindemuthianum in Michigan and implications in dry bean resistance breeding. Plant Dis 78:892–894

    Article  Google Scholar 

  • Kelly JD, Kolkman J, Schneider K (1998) Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica 102:343–356

    Article  Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Taylor J (2001) Registration of ‘Jaguar’ black bean. Crop Sci 41:1647

    Article  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Kornegay J, White JW, Ortiz de la Cruz O (1992) Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 62:171–180

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Lin L-Z, Harnly JM, Pastor-Corrales MS, Luthria DL (2008) The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem 107:399–410

    Article  CAS  Google Scholar 

  • Lopez-Salinas E, Acosta-Gallegos JA, Becerra-Leor EN, Frayre-Vazquez G, Orozco SH, Beebe SE (1997) Registration of Negro Tacana common bean. Crop Sci 37:1022

    Article  Google Scholar 

  • Lu W, Chang KC, Grafton KF, Schwarz PB (1996) Correlations between physical properties and canning quality attributes of navy bean (Phaseolus vulgaris L.). Cereal Chem 73:788–790

    CAS  Google Scholar 

  • Miklas PN, Porch T (2010) Guidelines for common bean QTL nomenclature. Annu Rep Bean Improv Coop 53:202–205

    Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006a) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  • Miklas PN, Hu J, Grunwald NJ, Larsen KM (2006b) Potential application of TRAP (targeted region amplified polymorphism) markers for mapping and tagging disease resistance traits in common bean. Crop Sci 46:910–916

    Article  CAS  Google Scholar 

  • NASS (2009) USDA crop production 2008 summary. http://www.ers.usda.gov/Briefing/drybeans/PDFs/DBnOutlook.pdf

  • Nienhuis J, Singh SP (1988) Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of Middle-American origin. II: genetic variance, heritability and expected response from selection. Plant Breed 101:155–163

    Article  Google Scholar 

  • Park SO, Coyne DP, Jung G, Skroch PW, Arnaud-Santana E, Steadman JR, Ariyaranthe HM, Nienhuis J (2000) Mapping of QTL for seed size and shape traits in common bean. J Am Soc Hort Sci 125:466–475

    CAS  Google Scholar 

  • Pastor-Corrales MA, Wright EM, Markel SG, Awale HE, Kelly JD, Jordahl JG, Lamppa RS, Mathew FM, Osorno JM, Goswami RS (2010) Comparing the virulence of new races of the common bean rust pathogen from Michigan and North Dakota. Annu Rep Bean Improv Coop 53:128–129

    Google Scholar 

  • Pedrosa-Harand A, Porch T, Gepts P (2008) Standard nomenclature for common bean chromosomes and linkage groups. Annu Rep Bean Improv Coop 51:106–107

    Google Scholar 

  • Perez-Vega E, Campa A, Giraldez R, Ferreira JJ (2008) Mapping of QTL involved in the genetic control of seed traits in common bean. Annu Rep Bean Improv Coop 51:116–117

    Google Scholar 

  • Posa-Macalincag MCT, Hosfield GL, Grafton KF, Uebersax MA, Kelly JD (2002) Quantitative trait loci (QTL) analysis of canning quality traits in kidney bean (Phaseolus vulgaris L.). J Am Soc Hort Sci 127:608–615

    CAS  Google Scholar 

  • SAS Institute, Inc. (2000) SAS version 8. SAS Institute Inc, Cary, NC

    Google Scholar 

  • Shellie KC, Hosfield GL (1991) Genotype × environmental effects on food quality of common bean: resource-efficient testing procedures. J Am Soc Hort Sci 116:732–736

    Google Scholar 

  • Stavely JR (1983) A rapid technique for Inoculation of Phaseolus vulgaris with multiple pathotypes of Uromyces phaseoli. Phytopathology 73:676–679

    Article  Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556

    Article  Google Scholar 

  • Terpstra KA, Wright EM, Kelly JD (2006) Protocol for visualizing sequence related amplified polymorphism (SRAP) and target region amplified polymorphism (TRAP) markers on agarose gels. Annu Rep Bean Improv Coop 49:191–192

    Google Scholar 

  • Tohme J, Gonzalez DO, Beebe S, Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    Article  CAS  Google Scholar 

  • Vallejo VA, Kelly JD (2008) Molecular tagging and genetic characterization of alleles at the Co-1 anthracnose resistance locus in common bean. ICFAI Univ J Genet Evol 1:7–20

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0: software for the calculation of genetic linkage maps. CPRODLO Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Voorips RE (2002) Mapchart version 2.2: windows software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  Google Scholar 

  • Walters KJ, Hosfield GL, Uebersax MA, Kelly JD (1997) Navy bean canning quality: correlations, heritability estimates and randomly amplified polymorphic DNA markers associated with component traits. J Am Soc Hort Sci 122:338–343

    Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Wright EW, Awale HE, Kelly JD (2008) Use of TRAP markers to map resistance to a new race of common bean rust in Michigan. Annu Rep Bean Improv Coop 51:210–211

    Google Scholar 

  • Xu BJ, Chang SKC (2008) Total phenolic content and antioxidant properties of Eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. J Food Sci 73:H19–H27

    Article  PubMed  CAS  Google Scholar 

  • Xu BJ, Chang SKC (2009) Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem 57:4754–4764

    Article  PubMed  CAS  Google Scholar 

  • Xu BJ, Yuan SH, Chang SKC (2007) Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J Food Sci 72:S167–S177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Matthew Blair for screening parental lines with SSR markers linked to QTL on B10 at CIAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, E.M., Kelly, J.D. Mapping QTL for seed yield and canning quality following processing of black bean (Phaseolus vulgaris L.). Euphytica 179, 471–484 (2011). https://doi.org/10.1007/s10681-011-0369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0369-2

Keywords

Navigation