Skip to main content

Biofortification Under Climate Change: The Fight Between Quality and Quantity

  • Chapter
  • First Online:
Environment, Climate, Plant and Vegetation Growth

Abstract

Climate change has been a serious problem in our industrialized world for the last century. We have faced its devastating effects on the environment, agriculture and human population. In current scenarios, around 3.8 billion people are predicted to live in areas with severe water problems by 2025. As the majority of staple crops are sensitive to environmental fluctuations, only an increase in global temperatures by 2 °C can disrupt agricultural practices and crop production periods severely. Therefore, plant breeders have canalized all the efforts to enhance the grain yield and produce more crops under adverse environmental conditions to meet the demand of the ever-increasing human population. However, the majority of current staple crop varieties produce grains with insufficient micronutrients. Moreover, climate change decreases micronutrient uptake from the soil and translocation within the plant body. In this chapter, three strategies (agronomic, breeding and transgenics) of micronutrient biofortification in various staple crops are explained with recent successful examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdoli M, Esfandiari E, Mousavi SB et al (2014) Effects of foliar application of zinc sulfate at different phenological stages on yield formation and grain zinc content of bread wheat (cv. Kohdasht). AJA 1:11–16

    Google Scholar 

  • Abid N, Khatoon A, Maqbool A et al (2017) Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Transgenic Res 26(1):109–122

    Article  CAS  PubMed  Google Scholar 

  • Aciksoz SB, Yazici A, Ozturk L et al (2011) Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil 349(1–2):215–225

    Article  CAS  Google Scholar 

  • Acosta-Gamboa LM, Liu S, Langley E et al (2017) Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis. Funct Plant Biol 44(1):94–106

    Article  Google Scholar 

  • Adnan M, Zahir S, Fahad S, Arif M, Mukhtar A, Imtiaz AK, Ishaq AM, Abdul B, Hidayat U, Muhammad A, Inayat-Ur R, Saud S, Muhammad ZI, Yousaf J, Amanullah Hafiz MH, Wajid N (2018) Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep 8:4339. https://doi.org/10.1038/s41598-018-22653-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aerts J, Droogers P (2004) Climate change in contrasting river basins: adaptation strategies for water, food, and environment. CABI Pub, Wallingford, pp 1–264

    Book  Google Scholar 

  • Aggarwal S, Kumar A, Bhati KK et al (2018) RNAi-mediated downregulation of inositol pentakisphosphate kinase (IPK1) in wheat grains decreases phytic acid levels and increases Fe and Zn accumulation. Front Plant Sci 9:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Akram R, Turan V, Hammad HM, Ahmad S, Hussain S, Hasnain A, Maqbool MM, Rehmani MIA, Rasool A, Masood N, Mahmood F, Mubeen M, Sultana SR, Fahad S, Amanet K, Saleem M, Abbas Y, Akhtar HM, Waseem F, Murtaza R, Amin A, Zahoor SA, ul Din MS, Nasim W (2018a) Fate of organic and inorganic pollutants in paddy soils. In: Hashmi MZ, Varma A (eds) Environmental pollution of paddy soils, soil biology. Springer, Cham, pp 197–214

    Chapter  Google Scholar 

  • Akram R, Turan V, Wahid A, Ijaz M, Shahid MA, Kaleem S, Hafeez A, Maqbool MM, Chaudhary HJ, MFH M, Mubeen M, Sadiq N, Murtaza R, Kazmi DH, Ali S, Khan N, Sultana SR, Fahad S, Amin A, Nasim W (2018b) Paddy land pollutants and their role in climate change. In: Hashmi MZ, Varma A (eds) Environmental pollution of paddy soils, soil biology. Springer, Cham, pp 113–124

    Chapter  Google Scholar 

  • Aksoy E, Maqbool A, Tindas İ et al (2017) Soybean: A new frontier in understanding the iron deficiency tolerance mechanisms in plants. Plant Soil 418(1–2):37–44

    Article  CAS  Google Scholar 

  • Ali N, Paul S, Gayen D et al (2013) Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 8(7):68161

    Article  CAS  Google Scholar 

  • Alomari D, Eggert K, von Wirén N et al (2019) Whole-genome association mapping and genomic prediction for iron concentration in wheat grains. Int J Mol Sci 20(1):76

    Article  CAS  Google Scholar 

  • Aluru MR, Rodermel SR, Reddy MB (2011) Genetic modification of low phytic acid 1-1 maize to enhance iron content and bioavailability. J Agr Food Chem 59(24):12954–12962

    Article  CAS  Google Scholar 

  • Alvarez JM, Rico MI (2003) Effects of zinc complexes on the distribution of zinc in calcareous soil and zinc uptake by maize. J Agr Food Chem 51(19):5760–5767

    Article  CAS  Google Scholar 

  • Anai T, Koga M, Tanaka H et al (2003) Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21(10):988–992

    Article  CAS  PubMed  Google Scholar 

  • Andersson MS, Saltzman A, Virk PS et al (2017) Progress update: crop development of biofortified staple food crops under HarvestPlus. AJFAND 17(2):11905–11935

    Article  CAS  Google Scholar 

  • Andjelkovic V (2018) Introductory chapter: climate changes and abiotic stress in plants. In: Andjelkovic V (ed) Plant, abiotic stress and responses to climate change. IntechOpen. https://doi.org/10.5772/intechopen.76102

  • Andre CM, Ghislain M, Bertin P et al (2007) Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J Agr Food Chem 55(2):366–378

    Article  CAS  Google Scholar 

  • Aro A, Gand A, Varo P (1995) Effects of supplementation of fertilizers on human selenium status in Finland. Analyst 120(3):841–843

    Article  CAS  PubMed  Google Scholar 

  • Ashokkumar K, Diapari M, Jha AB et al (2015) Genetic diversity of nutritionally important carotenoids in 94 pea and 121 chickpea accessions. J Food Compos Anal 43:49–60

    Article  CAS  Google Scholar 

  • Ates D, Sever T, Aldemir S et al (2016) Identification QTLs controlling genes for Se uptake in lentil seeds. PLoS One 11(3):0149210

    Article  CAS  Google Scholar 

  • Aziz K, Daniel KYT, Fazal M, Muhammad ZA, Farooq S, Fan W, Fahad S, Ruiyang Z (2017) Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environ Sci Pollut Res 24:23471–23487. https://doi.org/10.1007/s11356-017-0131-y

    Article  CAS  Google Scholar 

  • Babu R, Rojas NP, Gao S et al (2013) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126(2):389–399

    Article  CAS  PubMed  Google Scholar 

  • Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147(1):155–169

    Article  CAS  Google Scholar 

  • Behera PP, Singh SK, Singh DK et al (2018) Genetic diversity analysis of rice (Oryza sativa L.) genotypes with high grain zinc content for yield and yield traits. IJPPR 7(4):1319–1323

    Google Scholar 

  • Betts RA, Cox PM, Lee SE et al (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387(6635):796

    Article  CAS  Google Scholar 

  • Beyer P, Al-Babili S, Ye X et al (2002) Golden rice: Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. JN 132(3):506S–510S

    Google Scholar 

  • Bhati KK, Alok A, Kumar A (2016) Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J Exp Bot 67(14):4379–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatta M, Baenziger P, Waters B et al (2018) Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int J Mol Sci 19(10):3237

    Article  PubMed Central  CAS  Google Scholar 

  • Bista D, Heckathorn S, Jayawardena D et al (2018) Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plan Theory 7(2):28

    Google Scholar 

  • Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125(5):1015–1031

    Article  PubMed  Google Scholar 

  • Blair MW, Monserrate F, Beebe SE et al (2010) Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red-mottled seed class. J Plant Regist 4(1):55–59

    Article  Google Scholar 

  • Blair MW, Astudillo C, Rengifo J et al (2011) QTL analyses for seed iron and zinc concentrations in an intra-gene pool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122(3):511–521

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P, Astudillo C et al (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blancquaert D, Van Daele J, Strobbe S et al (2015) Improving folate (vitamin B 9) stability in biofortified rice through metabolic engineering. Nat Biotechnol 33(10):1076

    Article  CAS  PubMed  Google Scholar 

  • Boldrin PF, Faquin V, Ramos SJ et al (2013) Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31(2):238–244

    Article  CAS  Google Scholar 

  • Boonchuay P, Cakmak I, Rerkasem B et al (2013) Effect of different growth stages on seed zinc concentration and its impact on seedling vigor in rice. JSSPN 59:180–188

    CAS  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B et al (2012) Wheat ferritins: improving the iron content of the wheat grain. J Cereal Sci 56(2):204–213

    Article  CAS  Google Scholar 

  • Borrill P, Connorton J, Balk J et al (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(1_suppl1):S31–S40

    Article  PubMed  Google Scholar 

  • Brinch-Pedersen H, Olesen A, Rasmussen SK et al (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breeding 6(2):195–206

    Article  CAS  Google Scholar 

  • Brinch-Pedersen H, Hatzack F, Sørensen LD et al (2003) Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.). Transgenic Res 12(6):649–659

    Article  CAS  PubMed  Google Scholar 

  • Brown CR, Haynes KG, Moore M et al (2010) Stability and broad-sense heritability of mineral content in potato: iron. Am J Potato Res 87(4):390–396

    Article  CAS  Google Scholar 

  • Buck HT, Nisi JE, Salomon N (eds) (2007) Wheat production in stressed environments: proceedings of the 7th International wheat conference, 27 November-2 December 2005, Mar Del Plata, Argentina (Vol. 12). Springer

    Google Scholar 

  • Burgos G, Amoros W, Morote M et al (2007) Iron and zinc concentration of native Andean potato cultivars from a human nutrition perspective. J Sci Food Agr 87(4):668–675

    Article  CAS  Google Scholar 

  • Burkhardt PK, Beyer P, Wünn J et al (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. TPJ 11(5):1071–1078

    CAS  Google Scholar 

  • Burton RA, Collins HM, Kibble NA et al (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1, 3; 1, 4)-β-d-glucans and alters their fine structure. Plant Biotechnol J 9(2):117–135

    Article  CAS  PubMed  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG et al (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21(9):1082

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1–2):1–17

    CAS  Google Scholar 

  • Cakmak I, Kutman UB (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69(1):172–180

    Article  Google Scholar 

  • Cakmak I, Kalaycı M, Ekiz H et al (1999) Zinc deficiency as a practical problem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crop Res 60(1–2):175–188

    Article  Google Scholar 

  • Çakmak İ, Torun A, Millet E et al (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50(7):1047–1054

    Article  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y et al (2010) Biofortification and localization of zinc in wheat grain. J Agr Food Chem 58(16):9092–9102

    Article  CAS  Google Scholar 

  • Cakmak I, Guilherme LRG, Rashid A et al (2017) Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant Soil 418(1–2):319–335

    Article  CAS  Google Scholar 

  • Challinor AJ, Wheeler TR, Craufurd PQ et al (2007) Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agric Ecosyst Environ 119(1–2):190–204

    Article  Google Scholar 

  • Chandran S, Pukalenthy B, Adhimoolam K et al (2019) Marker-assisted selection to pyramid the opaque-2 (o2) and β-carotene (crtRB1) genes in maize. Front Genet 10:859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Yang F, Xu J et al (2002) Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J Agr Food Chem 50(18):5128–5130

    Article  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J et al (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. PNAS 100(6):3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Xue G, Chen P et al (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17(4):633–643

    Article  CAS  PubMed  Google Scholar 

  • Cheung WW, Brodeur RD, Okey TA et al (2015) Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Pro Oceanogr 130:19–31

    Article  Google Scholar 

  • Chilimba AD, Young SD, Black CR et al (2012) Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crop Res 125:118–128

    Article  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS et al (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49(5):1742–1750

    Article  CAS  Google Scholar 

  • CIMMYT (2016) Biofortification to fight “hidden hunger” in Zimbabwe. Available from: http://www.cimmyt.org/biofortification-to-fight-hidden-hunger-in-zimbabwe/. Accessed 10 Aug 2019

  • Cong L, Wang C, Chen L et al (2009) Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J Agr Food Chem 57(18):8652–8660

    Article  CAS  Google Scholar 

  • Connorton JM, Jones ER, Rodríguez-Ramiro I et al (2017) Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol 174(4):2434–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva EC, Nogueira RJMC, da Silva MA et al (2011) Drought stress and plant nutrition. Plant Stress 5(1):32–41

    Google Scholar 

  • da Silva AC, da Costa Santos D, Junior DLT et al (2018) Cowpea: a strategic legume species for food security and health. In Legume Seed Nutraceutical Research. IntechOpen

    Google Scholar 

  • Dancs G, Kondrák M, Bánfalvi Z (2008) The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers. BMC Plant Biol 8(1):65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Datta K, Baisakh N, Oliva N et al (2003) Bioengineered ‘golden’ indica rice cultivars with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1(2):81–90

    Article  CAS  PubMed  Google Scholar 

  • Decourcelle M, Perez-Fons L, Baulande S et al (2015) Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. J Exp Bot 66(11):3141–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Tigchelaar M et al (2018) Increase in crop losses to insect pests in a warming climate. Science 361(6405):916–919

    Article  CAS  PubMed  Google Scholar 

  • Devi P, Kaushik P, Saini DK (2019) QTLs identified for biofortification traits in wheat: a Review

    Google Scholar 

  • Dhawi F, Datta R, Ramakrishna W (2016) Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere 157:33–41

    Article  CAS  PubMed  Google Scholar 

  • Diapari M, Sindhu A, Bett K et al (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57(8):459–468

    Article  CAS  PubMed  Google Scholar 

  • Digesù AM, Platani C, Cattivelli L et al (2009) Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J Cereal Sci 50(2):210–218

    Article  CAS  Google Scholar 

  • Dikeman CL, Fahey GC Jr (2006) Viscosity as related to dietary fiber: a review. Crit Rev Food Sci 46(8):649–663

    Article  CAS  Google Scholar 

  • Dinkins RD, Reddy MS, Meurer CA et al (2001) Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. Vitro Cell Dev-Pl 37(6):742–747

    Article  CAS  Google Scholar 

  • Diretto G, Tavazza R, Welsch R et al (2006) Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z et al (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plantarum 129(3):635–643

    Article  CAS  Google Scholar 

  • Doshi KM, Eudes F, Laroche A et al (2006) Transient embryo-specific expression of anthocyanin in wheat. Vitro Cell Dev-Pl 42(5):432–438

    Article  CAS  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59(6):869–880

    Article  CAS  PubMed  Google Scholar 

  • Droogers P, van Dam J, Hoogeveen JIPPE et al (2004) Adaptation strategies to climate change to sustain food security. Climate change in contrasting river basins: adaptation strategies for water, food and environment. CABI Pub, Dordretch, pp 49–73

    Google Scholar 

  • Ducreux LJ, Morris WL, Hedley PE et al (2004) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot 56(409):81–89

    PubMed  Google Scholar 

  • Eastman CJ, Zimmermann MB (2018) The iodine deficiency disorders. In Endotext [Internet]. MDText. com, Inc. South Dartmouth (MA)

    Google Scholar 

  • Eckert H, LaVallee B, Schweiger BJ et al (2006) Co-expression of the borage Δ 6 desaturase and the Arabidopsis Δ 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224(5):1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. Plant Physiol 59(1):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C 4 photosynthesis, atmospheric CO2, and climate. Oecologia 112(3):285–299

    Article  PubMed  Google Scholar 

  • Elkonin LA, Italianskaya JV, Domanina IV et al (2016) Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation. Russ J Plant Physl 63(5):678–689

    Article  CAS  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J et al (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636

    Article  CAS  Google Scholar 

  • Etienne P, Diquelou S, Prudent M et al (2018) Macro and micronutrient storage in plants and their remobilization when facing scarcity: The case of drought. Agriculture 8(1):14

    Article  CAS  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Chen Y, Saud S, Wang K, Xiong D, Chen C, Wu C, Shah F, Nie L, Huang J (2013) Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. J Food Agri Environ 11(3&4):1635–1641

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2014a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921. https://doi.org/10.1007/s11356-014-3754-2

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S et al (2015) Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization. Clean Soil Air Water 43(10):1433–1440

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah AN, Ullah A, Wu C, Khan FA, Shah F, Ullah S, Chen Y, Huang J (2015a) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015b) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11(7):e0159590. https://doi.org/10.1371/journal.pone.0159590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Nasim W, Arif M, Wang F, Huang J (2016b) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016c) Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. https://doi.org/10.3389/fpls.2016.01250

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, Alharby HNW, Wu C, Huang J (2016d) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, NasimW AS, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: Plant responses and Management Options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Muhammad ZI, Abdul K, Ihsanullah D, Saud S, Saleh A, Wajid N, Muhammad A, Imtiaz AK, Chao W, Depeng W, Jianliang H (2018) Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Archives Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1443213

  • Fahad S, Rehman A, Shahzad B, Tanveer M, Saud S, Kamran M, Ihtisham M, Khan SU, Turan V, Rahman MHU (2019a) Rice responses and tolerance to metal/metalloid toxicity. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publ Ltd, Abington Hall Abington, Cambridge, pp 299–312

    Chapter  Google Scholar 

  • Fahad S, Adnan M, Hassan S, Saud S, Hussain S, Wu C, Wang D, Hakeem KR, Alharby HF, Turan V, Khan MA, Huang J (2019b) Rice responses and tolerance to high temperature. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publ Ltd, Abington Hall Abington, Cambridge, pp 201–224

    Chapter  Google Scholar 

  • Fang Y, Wang L, Xin Z et al (2008) Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. J Agr Food Chem 56(6):2079–2084

    Article  CAS  Google Scholar 

  • Fernandez MS, Kapran I, Souley S et al (2009) Collection and characterization of yellow endosperm fertilizers on human selenium status in Finland. Analyst 120:841–843

    Google Scholar 

  • Ficco DB, Mastrangelo AM, Trono D et al (2014) The colours of durum wheat: a review. Crop Pasture Sci 65(1):1–15

    Article  Google Scholar 

  • Finkelstein JL, Haas JD, Mehta S (2017) Iron-biofortified staple food crops for improving iron status: a review of the current evidence. Curr Opin Biotech 44:138–145

    Article  CAS  PubMed  Google Scholar 

  • Flores T, Karpova O, Su X et al (2008) Silencing of GmFAD3 gene by siRNA leads to low α-linolenic acids (18: 3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 17(5):839–850

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Robe K, Gaymard F et al (2019) The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors? Front Plant Sci 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg M, Sharma N, Sharma S et al (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giacosa A, Faliva M, Perna S et al (2014) Selenium fortification of an Italian rice cultivar via foliar fertilization with sodium selenate and its effects on human serum selenium levels and on erythrocyte glutathione peroxidase activity. Nutrients 6(3):1251–1261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giri A, Heckathorn S, Mishra S et al (2017) Heat stress decreases levels of nutrient-uptake and-assimilation proteins in tomato roots. Plan Theory 6(1):6

    Google Scholar 

  • Goffman FD, Böhme T (2001) Relationship between fatty acid profile and vitamin E content in maize hybrids (Zea mays L.). J Agr Food Chem 49(10):4990–4994

    Article  CAS  Google Scholar 

  • Golubkina N, Kekina H, Caruso G (2018) Yield, quality and antioxidant properties of Indian mustard (Brassica juncea L.) in response to foliar biofortification with selenium and iodine. Plants 7(4):80

    Article  CAS  PubMed Central  Google Scholar 

  • Gontia I, Tantwai K, Rajput LPS, Tiwari S (2012) Transgenic plants expressing phytase gene of microbial origin and their prospective application as feed. Food Technol Biotech 50(1):3

    CAS  Google Scholar 

  • Gordeeva EI, Shoeva OY, Khlestkina EK (2015) Marker-assisted development of bread wheat near-isogenic lines carrying various combinations of purple pericarp (Pp) alleles. Euphytica 203(2):469–476

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat biotechnol 17(3):282

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet 100(5):658–664

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Saunders DA et al (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. J Nutr 132(3):500S–502S

    Article  PubMed  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H et al (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21(4):382–386

    Article  Google Scholar 

  • Grootboom AW, Mkhonza NL, Mbambo Z et al (2014) Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum. Plant Cell Rep 33(3):521–537

    Article  CAS  PubMed  Google Scholar 

  • Guo JX, Feng XM, Hu XY et al (2016) Effects of soil zinc availability, nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice. J Agric Sci 154(4):584–597

    Article  CAS  Google Scholar 

  • Guzmán C, Medina-Larqué AS, Velu G et al (2014) Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentrations and desirable processing quality. J Cereal Sci 60(3):617–622

    Article  CAS  Google Scholar 

  • Guzmán-Maldonado SH, Martínez O, Acosta-Gallegos JA et al (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43(3):1029–1035

    Article  Google Scholar 

  • Haas JD (2014) Efficacy and other nutrition evidence for iron crops, Biofortification Progress Briefs. HarvestPlus, Washington, DC

    Google Scholar 

  • Haas JD, Luna SV, Lung’aho MG et al (2016) Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. J Nutr 146:1586–1592

    Article  CAS  PubMed  Google Scholar 

  • Habib ur R, Ashfaq A, Aftab W, Manzoor H, Fahd R, Wajid I, Md, Aminul I, Vakhtang S, Muhammad A, Asmat U, Abdul W, Syeda RS, Shah S, Shahbaz K, Fahad S, Manzoor H, Saddam H, Wajid N (2017) Application of CSM-CROPGRO-Cotton model for cultivars and optimum planting dates: Evaluation in changing semi-arid climate. Field Crops Res. https://doi.org/10.1016/j.fcr.2017.07.007

  • Hafiz MH, Wajid F, Farhat A, Fahad S, Shafqat S, Wajid N, Hafiz FB (2016) Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen. Environ Sci Pollut Res 24(3):2549–2557. https://doi.org/10.1007/s11356-016-8031-0

    Article  CAS  Google Scholar 

  • Hafiz MH, Muhammad A, Farhat A, Hafiz FB, Saeed AQ, Muhammad M, Fahad S, Muhammad A (2019) Environmental factors affecting the frequency of road traffic accidents: a case study of sub-urban area of Pakistan. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04752-8

  • Hanafy MS, Rahman SM, Nakamoto Y (2013) Differential response of methionine metabolism in two grain legumes, soybean and azuki bean, expressing a mutated form of Arabidopsis cystathionine γ-synthase. J Plant Physiol 170(3):338–345

    Article  CAS  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319(5861):330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Bio 18(4):309–318

    Article  CAS  Google Scholar 

  • Haynes KG, Yencho GC, Clough ME et al (2012) Genetic variation for potato tuber micronutrient content and implications for biofortification of potatoes to reduce micronutrient malnutrition. Am J Potato Res 89(3):192–198

    Article  CAS  Google Scholar 

  • He W, Shohag MJI, Wei Y et al (2013) Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer. Food Chem 141(4):4122–4126

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  CAS  PubMed  Google Scholar 

  • Hoekenga OA, Lung’aho MG, Tako E et al (2011) Iron biofortification of maize grain. Plant Genet Resour 9(2):327–329

    Article  CAS  Google Scholar 

  • Holme IB, Dionisio G, Brinch-Pedersen H et al (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10(2):237–247

    Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sc 168(4):541–549

    Article  CAS  Google Scholar 

  • Huang L, Ye Z, Bell RW, Dell B (2005) Boron nutrition and chilling tolerance of warm climate crop species. Ann Bot-Lodon 96(5):755–767

    Article  CAS  Google Scholar 

  • Huang S, Frizzi A, Florida CA et al (2006) High lysine and high tryptophan transgenic maize resulting from the reduction of both 19-and 22-kD α-zeins. Plant Mol Biol 61(3):525–535

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Rachmilevitch S, Xu J (2012) Root carbon and protein metabolism associated with heat tolerance. J Exp Bot 63(9):3455–3465

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Joshi V, Jander G (2014) The catabolic enzyme methionine gamma-lyase limits methionine accumulation in potato tubers. Plant Biotechnol J 12(7):883–893

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Kaschuk G (2014) Regulation of N2 fixation and NO3−/NH4+ assimilation in nodulated and N-fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environ Exp Bot 98:32–39

    Article  CAS  Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91(5):1461S–1467S

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–105

    Article  CAS  Google Scholar 

  • Ihemere U, Narayanan N, Sayre R (2012) Iron biofortification and homeostasis in transgenic cassava roots expressing an algal iron assimilatory protein, FEA1. Front Plant Sci 3:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Potato Center (2017) Sweet potato in Africa. Retrieved from https://cipotato.org/research/sweetpotato-in-africa/. Accessed: 15 Aug 2019

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, 976

    Google Scholar 

  • Islam SN (2004) Survey of carotenoid variation and quantitative trait loci mapping for carotenoid and tocopherol variation in maize. Doctoral dissertation, University of Illinois at Urbana-Champaign

    Google Scholar 

  • Islam MZ (2007) Adoption of BRRIdhan 29 production technologies by the farmers. Doctoral dissertation, Sher-e-Bangla Agricultural University

    Google Scholar 

  • Islam M, Wong A (2017) Climate change and food in/security: a critical nexus. Environments 4(2):38

    Article  Google Scholar 

  • Itoh K, Ozaki H, Okada K et al (2003) Introduction of Wx transgene into rice wx mutants leads to both high-and low-amylose rice. Plant Cell Physiol 44(5):473–480

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo P, Astudillo C, Blair MW et al (2018) Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). Theor Appl Genet 131(8):1645–1658

    Article  CAS  PubMed  Google Scholar 

  • Jerše A, Kacjan-Maršić N, Šircelj H et al (2017) Seed soaking in I and Se solutions increases concentrations of both elements and changes morphological and some physiological parameters of pea sprouts. Plant Physiol Bioch 118:285–294

    Article  CAS  Google Scholar 

  • Jerše A, Maršić NK, Kroflič A et al (2018) Is foliar enrichment of pea plants with iodine and selenium appropriate for production of functional food? Food Chem 267:368–375

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Struik PC, Van Keulen H et al (2008) Does increased zinc uptake enhance grain zinc mass concentration in rice? Ann Appl Biol 153(1):135–147

    Article  CAS  Google Scholar 

  • Jin J, Wang G, Liu X et al (2006) Interaction between phosphorus nutrition and drought on grain yield, and assimilation of phosphorus and nitrogen in two soybean cultivars differing in protein concentration in grains. J Plant Nutr 29(8):1433–1449

    Article  CAS  Google Scholar 

  • Jin Z, Minyan W, Lianghuan W et al (2008) Impacts of combination of foliar iron and boron application on iron biofortification and nutritional quality of rice grain. J Plant Nutr 31(9):1599–1611

    Article  CAS  Google Scholar 

  • Jin CW, Du ST, Chen WW et al (2009) Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol 150(1):272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamarn M, Wenwen C, Irshad A, Xiangping M, Xudong Z, Wennan S, Junzhi C, Shakeel A, Fahad S, Qingfang H, Tiening L (2017) Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regul 84:317–332. https://doi.org/10.1007/s10725-017-0342-8

    Article  CAS  Google Scholar 

  • Kamenarova K, Gecheff K, Stoyanova M et al (2007) Production of recombinant human lactoferin in transgenic barley. Biotechnol Biotec Eq 21(1):18–27

    Article  CAS  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security–A review. Prog Nat Sci 19(12):1665–1674

    Article  Google Scholar 

  • Katsube T, Kurisaka N, Ogawa M et al (1999) Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol 120(4):1063–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khush GS, Lee S, Cho JI et al (2012) Biofortification of crops for reducing malnutrition. Plant Biotechnol Rep 6(3):195–202

    Article  Google Scholar 

  • Kibria G (2016) Sea-Level-Rise and its impact on wetlands, water, agriculture, fisheries, aquaculture, migration, public health, infrastructure and adaptation. 6p. https://doi.org/10.13140/RG.2.1.1267.2487

    Google Scholar 

  • Kim CK, Han JS, Lee HS et al (2006) Expression of an Arabidopsis CAX2 variant in potato tubers increases calcium levels with no accumulation of manganese. Plant Cell Rep 25(11):1226–1232

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Kim JK, Kim HJ et al (2012a) Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One 7(10):e48287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WS, Chronis D, Juergens M et al (2012b) Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman–Birk protease inhibitor in seeds. Planta 235(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kim YH, Ahn YO et al (2013) Downregulation of the lycopene ϵ-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli. Physiol Plantarum 147(4):432–442

    Article  CAS  Google Scholar 

  • Klimenko SB, Peshkova AA, Dorofeev NV (2006) Nitrate reductase activity during heat shock in winter wheat. J Stress Physiol Biochem 2(1):50–55

    Google Scholar 

  • Krishna MSR, Reddy SS, Satyanarayana SD (2017a) (1) Marker-assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-7. 3 Biotech 7(3):165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna MSR, Surender M, Reddy SS (2017b) (2) Marker assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-6. Acta Ecol Sin 37(5):340–345

    Article  Google Scholar 

  • Krishnan P, Swain DK, Bhaskar BC et al (2007) Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric Ecosyst Environ 122(2):233–242

    Article  Google Scholar 

  • Kumar M (2011) Evidences, Projections and potential impacts of climate change on food production in Northeast India. Indian J Hill Farm 24(2):1–10

    Google Scholar 

  • Kumar AA, Reddy BV, Ramaiah B (2013) Biofortification for combating micronutrient malnutrition: Identification of commercial sorghum cultivars with high grain iron and zinc concentrations. Indian J Agron 28(1):89–94

    Google Scholar 

  • Lai J, Messing J (2002) Increasing maize seed methionine by mRNA stability. Plant J 30(4):395–402

    Article  CAS  PubMed  Google Scholar 

  • Laurie SM, Faber M, Van Jaarsveld PJ et al (2012) β-Carotene yield and productivity of orange-fleshed sweet potato (Ipomoea batatas L. Lam.) as influenced by irrigation and fertilizer application treatments. Sci Hortic-Amsterdam 142:180–184

    Article  CAS  Google Scholar 

  • Lee TT, Wang MM, Hou RC et al (2003) Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2S albumin. Biosci Biotechnol Biochem 67(8):1699–1705

    Article  PubMed  Google Scholar 

  • Lee S, Jeon US, Lee SJ et al (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106(51):22014–22019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim IG, Kim HS et al (2010) Development of transgenic rice lines expressing the human lactoferrin gene. JPB 37(4):556–561

    Google Scholar 

  • Lee S, Kim YS, Jeon US et al (2012) Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells 33(3):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Beta T, Sun S et al (2006) Protein characteristics of Chinese black-grained wheat. Food Chem 98(3):463–472

    Article  CAS  Google Scholar 

  • Lipkie TE, De Moura FF, Zhao ZY et al (2013) Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. J Agr Food Chem 61(24):5764–5771

    Article  CAS  Google Scholar 

  • Liu K, Gu Z (2009) Selenium accumulation in different brown rice cultivars and its distribution in fractions. J Agr Food Chem 57(2):695–700

    Google Scholar 

  • Liu Q, Wang Z, Chen X et al (2003) Stable inheritance of the antisense Waxy gene in transgenic rice with reduced amylose level and improved quality. Transgenic Res 12(1):71–82

    Article  PubMed  Google Scholar 

  • Lu Y, Shah T, Hao Z et al (2011) Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize. PLoS One 6(9):e24861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I et al (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102(2–3):392–397

    Article  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I et al (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21(sup3):184S–190S

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewicz M, Matysiak-Kata I, Skala J et al (2004) Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agr Food Chem 52(6):1526–1533

    Article  CAS  Google Scholar 

  • Luna SV, Lung’aho MG, Gahutu JB et al (2015) Effects of an iron-biofortification feeding trial on physical performance of Rwandan women. EJNFS:5–1189

    Google Scholar 

  • Lung’aho MG, Mwaniki AM, Szalma SJ et al (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 6(6):20429

    Article  CAS  Google Scholar 

  • Mabesa RL, Impa SM, Grewal D et al (2013) Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops Res 149:223–233

    Article  Google Scholar 

  • Maleki FS, Chaichi MR, Mazaheri D et al (2011) Barley grain mineral analysis as affected by different fertilizing systems and by drought stress. JAST 315-326.

    Google Scholar 

  • Manoj K, Swarup A, Patra AK et al (2012) Effect of elevated CO2 and temperature on phosphorus efficiency of wheat grown in an inceptisol of subtropical India. Plant Soil Environ 58:230–235

    Article  Google Scholar 

  • Maqbool MA (2017) Heterosis estimation of indigenous maize (Zea mays L.) hybrids and stability analysis of exotic accessions for pro-vitamin A and yield components. Doctoral dissertation, University of Agriculture Faisalabad

    Google Scholar 

  • Maqbool MA, Aslam M, Khan MS et al (2017) Evaluation of single cross yellow maize hybrids for agronomic and carotenoid traits. Int J Agric Biol 19(5):1087–1098

    Article  CAS  Google Scholar 

  • Martinek P, Jirsa O, Vaculová K et al (2014) Use of wheat gene resources with different grain colour in breeding. 64. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs: 75–78

    Google Scholar 

  • Masuda H, Suzuki M, Morikawa KC et al (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1(1):100–108

    Article  Google Scholar 

  • Masuda H, Usuda K, Kobayashi T et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2(4):155–166

    Article  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS et al (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masuda H, Kobayashi T, Ishimaru Y et al (2013) Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci 4:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Maziya-Dixon B, Kling JG, Menkir A et al (2000) Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr Bull 21(4):419–422

    Article  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA et al (eds) (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change, vol 2. Cambridge University Press, New York

    Google Scholar 

  • Mehra R, Sarker A, Dixit HK et al (2018) Genetic diversity iron and zinc content in lentil (Lens Culinaris Medikus Subsp. Culinaris) as assessed by SSR marker. RJLBPCS 4(3):440–454

    CAS  Google Scholar 

  • Mihálik D, Gubišová M, Klempová T et al (2014) Transgenic barley producing essential polyunsaturated fatty acids. Biol Plantarum 58(2):348–354

    Article  CAS  Google Scholar 

  • Misra AK (2014) Climate change and challenges of water and food security. Int J Sustain 3(1):153–165

    Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21(4):392–396

    Article  Google Scholar 

  • Morris J, Hawthorne KM, Hotze T et al (2008) Nutritional impact of elevated calcium transport activity in carrots. Proc Natl Acad Sci U S A 105(5):1431–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad Z, Abdul MK, Abdul MS, Kenneth BM, Muhammad S, Shahen S, Ibadullah J, Fahad S (2019) Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04838-3

  • Murray-Kolb LE, Wenger MJ, Scott SP et al (2017) Consumption of iron-biofortified beans positively affects cognitive performance in 18-to 27-year-old Rwandan female college students in an 18-week randomized controlled efficacy trial. J Nutr 147:2109–2117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N et al (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9(12):113583

    Article  CAS  Google Scholar 

  • Muzhingi T, Palacios-Rojas N, Miranda A et al (2017) Genetic variation of carotenoids, vitamin E and phenolic compounds in Provitamin A biofortified maize. J Sci Food Agr 97(3):793–801

    Article  CAS  Google Scholar 

  • Nakandalage N, Nicolas M, Norton RM et al (2016) Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Front Plant Sci 7:764

    Article  PubMed  PubMed Central  Google Scholar 

  • Nandi S, Suzuki YA, Huang J et al (2002) Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci 163(4):713–722

    Article  CAS  Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. PNAS 106(19):7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan N, Beyene G, Chauhan RD et al (2015) Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems. Plant Sci 240:170–181

    Article  CAS  PubMed  Google Scholar 

  • Neela S, Fanta SW (2019) Review on nutritional composition of orange-fleshed sweet potato and its role in management of vitamin A deficiency. Food Sci Nutr 7:1920–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neeraja CN, Babu VR, Ram S et al (2017) Biofortification in cereals: progress and prospects. Curr Sci 113(6):1050–1057

    Article  Google Scholar 

  • Ngigi PB, Lachat C, Masinde PW et al (2019) Agronomic biofortification of maize and beans in Kenya through selenium fertilization. Environ Geochem Hlth 41:2577–2591

    Article  CAS  Google Scholar 

  • Nooria M, Adibiana M, Sobhkhizia A et al (2014) Effect of phosphorus fertilizer and mycorrhiza on protein percent, dry weight, weight of 1000 grain in wheat. Int J Plant Anim Environ Sci 4(2):561–564

    Google Scholar 

  • Oakes JV, Shewmaker CK, Stalker DM (1991) Production of cyclodextrins, a novel carbohydrate, in the tubers of transgenic potato plants. Bio/Technology 9(10):982

    Article  CAS  Google Scholar 

  • Ogo Y, Ozawa K, Ishimaru T et al (2013) Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits. P Biotechnol J 11(6):734–746

    Article  CAS  Google Scholar 

  • Ohnoutkova L, Zitka O, Mrizova K et al (2012) Electrophoretic and chromatographic evaluation of transgenic barley expressing a bacterial dihydrodipicolinate synthase. Electrophoresis 33(15):2365–2373

    Article  CAS  PubMed  Google Scholar 

  • Oikeh SO, Menkir A, Maziya-Dixon B et al (2003) Assessment of concentrations of iron and zinc and bioavailable iron in grains of early-maturing tropical maize varieties. J Agr Food Chem 51(12):3688–3694

    Article  CAS  Google Scholar 

  • Oikeh SO, Menkir A, Maziya-Dixon B et al (2004) Assessment of iron bioavailability from twenty elite late-maturing tropical maize varieties using an in vitro digestion/Caco-2 cell model. J Sci Food Agr 84(10):1202–1206

    Article  CAS  Google Scholar 

  • Oliveira VCD, Faquin V, Guimarães KC et al (2018) Agronomic biofortification of carrot with selenium. Cienc Agrotec 42(2):138–147

    Article  CAS  Google Scholar 

  • Ortiz R, Sayre KD, Govaerts B et al (2008) Climate change: can wheat beat the heat? Agri Ecosyst Environ 126(1–2):46–58

    Article  Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E et al (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46(3):293–307

    Article  CAS  Google Scholar 

  • Ozkuru E, Ates D, Nemli S et al (2018) Association mapping of loci linked to copper, phosphorus, and potassium concentrations in the seeds of C. arietinum and C. reticulatum. Genomics 111(6):1873–1881

    Article  PubMed  CAS  Google Scholar 

  • Ozkuru E, Ates D, Nemli S et al (2019) Genome-wide association studies of molybdenum and selenium concentrations in C. arietinum and C. reticulatum seeds. Mol Breeding 39(3):46

    Article  CAS  Google Scholar 

  • Paine JA, Shipton CA (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23(4):482

    Article  CAS  PubMed  Google Scholar 

  • Palii A, Batîru G (2016) Amino-acid content in grain protein of tetraploid opaque-2 maize. J Food Agric Environ 13(1)

    Google Scholar 

  • Palmer AC, Healy K, Barffour MA et al (2016) Provitamin A carotenoid–biofortified maize consumption increases pupillary responsiveness among Zambian children in a randomized controlled trial. Nutr J 146(12):2551–2558

    Article  CAS  Google Scholar 

  • Pandey N, Hossain F, Kumar K et al (2015) Microsatellite marker-based genetic diversity among quality protein maize (QPM) inbreds differing for kernel iron and zinc. Mol Plant Breed 6(3):1–10

    Google Scholar 

  • Park S, Kim CK, Pike LM et al (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca 2+ transporter. Mol Breeding 14(3):275–282

    Article  Google Scholar 

  • Park S, Cheng NH, Pittman JK et al (2005) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol 139(3):1194–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SC, Kim YH, Kim SH et al (2015) Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity. Physiol Plantarum 153(4):525–537

    Article  CAS  Google Scholar 

  • Parry M, Rosenzweig C, Iglesias A et al (1999) Climate change and world food security: a new assessment. Glob Environ Chang 9:51–S67

    Article  Google Scholar 

  • Patidar M, Mali AL (2004) Effect of farmyard manure, fertility levels and bio-fertilizers on growth, yield and quality of sorghum (Sorghum bicolor). Indian J Agron 49(2):117–120

    Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L et al (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat x wild emmer wheat RIL population. Theor Appl Genet 119(2):353–369

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol 68:429–439

    Article  CAS  Google Scholar 

  • Petry N, Egli I, Gahutu JB et al (2012) Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. J Nutr 142(3):492–497

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Boy E, Wirth J et al (2015) The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7(2):1144–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phattarakul N, Rerkasem B, Li LJ et al (2012) Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361(1–2):131–141

    Article  CAS  Google Scholar 

  • Pierce EC, LaFayette PR, Ortega MA et al (2015) Ketocarotenoid production in soybean seeds through metabolic engineering. PLoS One 10(9):0138196

    Article  CAS  Google Scholar 

  • Pixley KV, Palacios-Rojas N, Glahn RP (2011) The usefulness of iron bioavailability as a target trait for breeding maize (Zea mays L.) with enhanced nutritional value. Field Crops Res 123(2):153–160

    Article  Google Scholar 

  • Pixley K, Rojas NP, Babu R et al (2013) Biofortification of maize with provitamin A carotenoids. In: Tanumihardjo SH (ed) Carotenoids and human health. Humana Press, Totowa, pp 271–292

    Chapter  Google Scholar 

  • Poblaciones MJ, Rengel Z (2016) Soil and foliar zinc biofortification in field pea (Pisum sativum L.): Grain accumulation and bioavailability in raw and cooked grains. Food Chem 212:427–433

    Article  CAS  PubMed  Google Scholar 

  • Poblaciones MJ, Rodrigo S, Santamaria O et al (2014) Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under mediterranean conditions. J Sci Food Agr 94(6):1101–1106

    Article  CAS  Google Scholar 

  • Poggi V, Arcioni A, Filippini P et al (2000) Foliar application of selenite and selenate to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. J Agr Food Chem 48(10):4749–4751

    Article  CAS  Google Scholar 

  • Popova Z, Kercheva M (2005) CERES model application for increasing preparedness to climate variability in agricultural planning—risk analyses. Phys Chem Earth 30(1–3):117–124

    Article  Google Scholar 

  • Prasanna R, Bidyarani N, Babu S et al (2015) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1(1):998507

    Google Scholar 

  • Prasanna R, Nain L, Rana A et al (2016) Biofortification with microorganisms: present status and future challenges. In: Singh U, Praharaj CS, Singh SS et al (eds) Biofortification of food crops. Springer, Cham, pp 249–262

    Chapter  Google Scholar 

  • Premarathna L, McLaughlin MJ, Kirby JK et al (2012) Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain. J Agr Food Chem 60(23):6037–6044

    Article  CAS  Google Scholar 

  • Pukalenthy B, Manickam D, Chandran S et al (2019) Incorporation of opaque-2 into ‘UMI 1200’, an elite maize inbred line, through marker-assisted backcross breeding. Biotechnol Biotec Eq 1–10

    Google Scholar 

  • Qamar-uz Z, Zubair A, Muhammad Y, Muhammad ZI, Abdul K, Fahad S, Safder B, Ramzani PMA, Muhammad N (2017) Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries. Arch Agron Soil Sci 64:147–161. https://doi.org/10.1080/03650340.2017.1338343

    Article  CAS  Google Scholar 

  • Rai KN, Govindaraj M, Rao AS (2012) Genetic enhancement of grain iron and zinc content in pearl millet. Qual Assur Saf Crop 4(3):119–125

    Article  CAS  Google Scholar 

  • Raj A, Chakrabarti B, Pathak H et al (2015) Impact of elevated temperature on iron and zinc uptake in rice crop. Int J Agric Environ Biotechnol 8(3):691

    Article  Google Scholar 

  • Ram H, Rashid A, Zhang W et al (2016) Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant Soil 403(1–2):389–401

    Article  CAS  Google Scholar 

  • Ramesh SA, Choimes S, Schachtman DP (2004) Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol 54(3):373–385

    Article  CAS  PubMed  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP et al (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Ramzani PMA, Khalid M, Naveed M et al (2016) Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil. Plant Physiol Bioch 104:284–293

    Article  CAS  Google Scholar 

  • Rana A, Joshi M, Prasanna R et al (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Reddy VR, Pachepsky YA (2000) Predicting crop yields under climate change conditions from monthly GCM weather projections. Environ Model Softw 15(1):79–86

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee TD et al (2018) Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360(6386):317–320

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro ND, Domingues LDS, Zemolin AEM (2013) Selection of common bean lines with high agronomic performance and high calcium and iron concentrations. Pesqui Agropecu Bras 48(10):1368–1375

    Article  Google Scholar 

  • Rivero RC, Hernández PS, Rodrı́guez EMR (2003a) Mineral concentrations in cultivars of potatoes. Food Chem 83(2):247–253

    Article  CAS  Google Scholar 

  • Rivero RM, Sánchez E, Ruiz JM et al (2003b) Influence of temperature on biomass, iron metabolism and some related bioindicators in tomato and watermelon plants. J Plant Physiol 160(9):1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Romay MC, Millard MJ, Glaubitz JC et al (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14(6):R55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Römer S, Lübeck J, Kauder F et al (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4(4):263–272

    Article  PubMed  CAS  Google Scholar 

  • Ros GH, Van Rotterdam AMD, Bussink DW et al (2016) Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil 404(1–2):99–112

    Article  CAS  Google Scholar 

  • Rosenzweig C, Liverman D (1992) Predicted effects of climate change on agriculture: a comparison of temperate and tropical regions. In: Majumdar DSK (ed) Dalam global climate change: implications, challenges, and mitigation measures. The Pennsylvania Academy of Sciences, Pennsylvania, pp 342–361

    Google Scholar 

  • Sajjad H, Muhammad M, Ashfaq A, Waseem A, Hafiz MH, Mazhar A, Nasir M, Asad A, Hafiz UF, Syeda RS, Fahad S, Depeng W, Wajid N (2019) Using GIS tools to detect the land use/land cover changes during forty years in Lodhran district of Pakistan. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-06072-3

  • Saltzman A, Birol E, Bouis HE et al (2013) Biofortification: progress toward a more nourishing future. Global Food Secur 2(1):9–17

    Article  Google Scholar 

  • Sanchez PA, Swaminathan MS (2005) Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365(9457):442–444

    Article  PubMed  Google Scholar 

  • Santos CAF, Boiteux LS (2013) Breeding biofortified cowpea lines for semi-arid tropical areas by combining higher seed protein and mineral levels. Genet Mol Res 12(4):6782–6789

    Article  CAS  PubMed  Google Scholar 

  • Santra SC, Mallick A, Samal AC (2014) Global warming impact on crop productivity. In: Sengar RS, Sengar K (eds) Climate change effect on crop productivity, 1st edn. CRC Press, Boca Raton, pp 357–384

    Chapter  Google Scholar 

  • Sardans J, Penuelas J, Ogaya R (2008) Drought’s impact on Ca, Fe, Mg, Mo and S concentration and accumulation patterns in the plants and soil of a Mediterranean evergreen Quercus ilex forest. Biogeochemistry 87(1):49–69

    Article  CAS  Google Scholar 

  • Sarker A, Agrawal SK (2015) Combating micronutrient malnutrition with biofortified lentils. International Center for Agricultural Research in the Dry Areas (ICARDA), Amman, Jordan. https://hdl.handle.net/20.500.11766/5537. Accessed 15 Aug 2019

  • Sathya A, Vijayabharathi R, Srinivas V et al (2016) Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6(2):138

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato S, Xing A, Ye X et al (2004) Production of γ-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean 1. Crop Sci 44(2):646–652

    CAS  Google Scholar 

  • Saud S, Chen Y, Long B, Fahad S, Sadiq A (2013) The different impact on the growth of cool season turf grass under the various conditions on salinity and draught stress. Int J Agric Sci Res 3:77–84

    Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y (2014) Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morph physiological functions. SciWorld J 2014:1–10. https://doi.org/10.1155/2014/368694

    Article  CAS  Google Scholar 

  • Saud S, Chen Y, Fahad S, Hussain S, Na L, Xin L, Alhussien SA (2016) Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ Sci Pollut Res 23(17):17647–17655. https://doi.org/10.1007/s11356-016-6957-x

    Article  CAS  Google Scholar 

  • Saud S, Fahad S, Yajun C, Ihsan MZ, Hammad HM, Nasim W, Amanullah Jr, Arif M, Alharby H (2017) Effects of Nitrogen Supply on Water Stress and Recovery Mechanisms in Kentucky Bluegrass Plants. Front Plant Sci 8:983. https://doi.org/10.3389/fpls.2017.00983

    Article  PubMed  PubMed Central  Google Scholar 

  • Sayre R, Beeching JR, Cahoon EB (2011) The BioCassava plus program: biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol 62:251–272

    Article  CAS  PubMed  Google Scholar 

  • Schaffert RE, Paes MCD, Guimarães PEO (2011) Results of the maize biofortification research actions in the HarvestPlus and BioFort projects. In Embrapa Milho e Sorgo-Resumo em anais de congresso (ALICE). Rio de Janeiro

    Google Scholar 

  • Schmidt MA, Parrott WA, Hildebrand DF et al (2015) Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnol J 13(4):590–600

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M (2012) Climate change surprise: high carbon dioxide levels can retard plant growth, study reveals, pp 1–3

    Google Scholar 

  • Sen Gupta D, Thavarajah D, McGee RJ (2016) Genetic diversity among cultivated and wild lentils for iron, zinc, copper, calcium and magnesium concentrations. Aus Journal of Crop Sci 10(10):1381

    Article  CAS  Google Scholar 

  • Sestili F, Janni M, Doherty A et al (2010) Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol 10(1):144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shafiq M, Qadir A, Ahmad SR (2019) Biofortification: a sustainable agronomic strategy to increase selenium content and antioxidant activity in garlic. Appl Ecol Env Res 17(2):1685–1704

    Article  Google Scholar 

  • Shah F, Lixiao N, Kehui C, Tariq S, Wei W, Chang C, Liyang Z, Farhan A, Fahad S, Huang J (2013) Rice grain yield and component responses to near 2°C of warming. Field Crop Res 157:98–110

    Article  Google Scholar 

  • Sharma I, Singh G, Gupta RK (2013) Wheat improvement in India. In: Paroda R, Dasgupta S, Mal B et al (eds) Improving wheat productivity in Asia. Proceedings of the Regional Consultation on Improving Wheat Productivity in Asia, Bangkok, Thailand; 26–27 April, 2012

    Google Scholar 

  • Shi J, Wang H, Schellin K et al (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25(8):930

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Li H, Tong Y et al (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306(1–2):95–104

    Article  CAS  Google Scholar 

  • Shin YM, Park HJ, Yim SD et al (2006) Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm. Plant Biotechnol J 4(3):303–315

    Article  CAS  PubMed  Google Scholar 

  • Shivay YS, Kumar D, Prasad R et al (2008) Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea. Nutr Cycl Agroecosys 80(2):181–188

    Article  CAS  Google Scholar 

  • Shivay YS, Prasad R, Pal M (2015) Effects of source and method of zinc application on yield, zinc biofortification of grain, and Zn uptake and use efficiency in chickpea (Cicer arietinum L.). Commun Soil Sci Plan 46(17):2191–2200

    Article  CAS  Google Scholar 

  • Shukla UN, Mishra ML (2018) Biofortification: Golden way to save life from micronutrient deficiency-A review. Agric Rev 39(3):202–209

    Google Scholar 

  • Sindhu AS, Zheng Z, Murai N (1997) The pea seed storage protein legumin was synthesized, processed, and accumulated stably in transgenic rice endosperm. Plant Sci 130(2):189–196

    Article  Google Scholar 

  • Singh A, Sharma V, Dikshit HK et al (2017a) Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). PLoS One 12(11):0188296

    Google Scholar 

  • Singh A, Sharma VK, Dikshit HK et al (2017b) Microsatellite marker-based genetic diversity analysis of elite lentil lines differing in grain iron and zinc concentration. J Plant Biochem Biot 26(2):199–207

    Article  CAS  Google Scholar 

  • Singh R, Govindan V, Andersson MS (2017c) Zinc-Biofortified wheat: harnessing genetic diversity for improved nutritional quality. Science Brief: Biofortification No. 1 (May 2017). CIMMYT, HarvestPlus, and the Global Crop Diversity Trust. Bonn, Germany

    Google Scholar 

  • Singh SP, Keller B, Gruissem W et al (2017d) Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. Theor Appl Genet 130(2):283–292

    Article  CAS  PubMed  Google Scholar 

  • Siritunga D, Sayre RT (2003) Generation of cyanogen-free transgenic cassava. Planta 217(3):367–373

    Article  CAS  PubMed  Google Scholar 

  • Smoleń S, Kowalska I, Sady W (2014) Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci Hortic 166:9–16

    Article  CAS  Google Scholar 

  • Smoleń S, Skoczylas Ł, Ledwożyw-Smoleń I et al (2016) The quality of carrot (Daucus carota L.) cultivated in the field depending on iodine and selenium fertilization. Folia Hortic 28(2):151–164

    Article  Google Scholar 

  • Smoleń S, Kowalska I, Skoczylas Ł et al (2018) The effect of salicylic acid on biofortification with iodine and selenium and the quality of potato cultivated in the NFT system. Sci Hortic 240:530–543

    Article  CAS  Google Scholar 

  • Smoleń S, Baranski R, Ledwożyw-Smoleń I et al (2019) Combined biofortification of carrot with iodine and selenium. Food Chem 300:125202

    Article  PubMed  CAS  Google Scholar 

  • Song S, Hou W, Godo I et al (2013) Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine. J Exp Bot 64(7):1917–1926

    Article  CAS  PubMed  Google Scholar 

  • Song XY, Zhu WJ, Tang RM et al (2016) Over-expression of StLCYb increases β-carotene accumulation in potato tubers. Plant Biotechnol Rep 10(2):95–104

    Article  Google Scholar 

  • Storozhenko S, De Brouwer V, Volckaert M (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25(11):1277

    Article  CAS  PubMed  Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N et al (2014) Formation of heterotic groups and understanding genetic effects in a provitamin A biofortified maize breeding program. Crop Sci 54(1):14–24

    Article  CAS  Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N et al (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128(5):851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S et al (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19(5):466

    Article  CAS  PubMed  Google Scholar 

  • Tamás C, Kisgyörgy BN, Rakszegi M et al (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28(7):1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Tan GZH, Bhowmik D, Shekhar S et al (2018) Investigation of baseline iron levels in Australian chickpea and evaluation of a transgenic biofortification approach. Front Plant Sci 9:788

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang M, He X, Luo Y et al (2013) Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize. J Sci Food Agr 93(5):1049–1054

    Article  CAS  Google Scholar 

  • Taub D (2010) Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat Edu Knowl 3(10):21

    Google Scholar 

  • Telengech PK, Maling’a JN, Nyende AB et al (2015) Gene expression of beta carotene genes in transgenic biofortified cassava. 3 Biotech 5(4):465–472

    Article  CAS  PubMed  Google Scholar 

  • Thavarajah P (2012) Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: Biofortification opportunities to combat global micronutrient malnutrition. Food Res Int 49(1):99–104

    Article  CAS  Google Scholar 

  • Thavarajah D, Ruszkowski J, Vandenberg A (2008) High potential for selenium biofortification of lentils (Lens culinaris L.). J Agr Food Chem 56(22):10747–10753

    Article  CAS  Google Scholar 

  • Thavarajah P, Thavarajah D, Vandenberg A (2009) Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability. J Agr Food Chem 57(19):9044–9049

    Article  CAS  Google Scholar 

  • Thavarajah P, Wejesuriya A, Rutzke M et al (2011) The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3 year study. Euphytica 180(1):123–128

    Article  CAS  Google Scholar 

  • The Straits Times (2019) Obama says world must speed up climate change fight September 1. http://www.straitstimes.com/world/united-states/obama-says-world-must-reach-climate-dealin-paris-while-we-still-can. Accessed on 7 Sept 2019

  • Tiwari VK, Rawat N, Chhuneja P et al (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J Hered 100(6):771–776

    Article  CAS  PubMed  Google Scholar 

  • Trethowan RM, Reynolds M, Sayre K et al (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146(4):405–413

    Article  Google Scholar 

  • Trijatmiko KR, Dueñas C, Tsakirpaloglou N et al (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • True RH, Hogan JM, Augustin J et al (1978) Mineral composition of freshly harvested potatoes. Am J Potato Res 55(9):511–519

    Article  CAS  Google Scholar 

  • Turakainen M, Hartikainen H, Ekholm P et al (2006) Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum L.) tubers supplemented with selenate. J Agr Food Chem 54(22):8617–8622

    Article  CAS  Google Scholar 

  • Upadhyaya CP, Young KE, Akula N et al (2009) Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177(6):659–667

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Bajaj D, Das S et al (2016) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:24050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaiknoras KA, Larochelle C (2018) The impact of biofortified iron bean adoption on productivity, and bean consumption, purchases and sales. Agricultural & Applied Economics Association Annual Meeting, Washington, DC

    Google Scholar 

  • Valera HGA, Habib MA, Yamano T (2019) Is micronutrient training effective in creating demand for zinc rice? A randomized control trial study and panel data analysis for Bangladesh

    Google Scholar 

  • Van Eck J, Conlin B, Garvin DF et al (2007) Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. Am J Potato Res 84(4):331

    Article  Google Scholar 

  • Van Eenennaam AL, Lincoln K, Durrett TP et al (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15(12):3007–3019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandemark GJ, Grusak MA, McGee RJ (2018) Mineral concentrations of chickpea and lentil cultivars and breeding lines grown in the US Pacific Northwest. Crop J 6(3):253–262

    Article  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164(3):371–378

    Article  CAS  Google Scholar 

  • Velu G, Rai KN, Muralidharan V et al (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed 126(2):182–185

    Article  CAS  Google Scholar 

  • Vergara Carmona VM, Cecílio Filho AB, Almeida HJD et al (2019) Fortification and bioavailability of zinc in potato. J Sci Food Agr 99(7):3525–3529

    Article  CAS  Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J et al (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    Article  PubMed  Google Scholar 

  • Wahid F, Sharif M, Fahad S et al (2019) Arbuscular mycorrhizal fungi improve the growth and phosphorus uptake of mung bean plants fertilized with composted rock phosphate fed dung in alkaline soil environment. J Plant Nutr:1–10

    Google Scholar 

  • Wajid N, Ashfaq A, Asad A, Muhammad T, Muhammad A, Muhammad S, Khawar J, Ghulam MS, Syeda RS, Hafiz MH, Muhammad IAR, Muhammad ZH, Muhammad Habib ur R, Veysel T, Fahad S, Suad S, Aziz K, Shahzad A (2017) Radiation efficiency and nitrogen fertilizer impacts on sunflower crop in contrasting environments of Punjab. Pakistan Environ Sci Pollut Res 25:1822–1836. https://doi.org/10.1007/s11356-017-0592-z

    Article  CAS  Google Scholar 

  • Wang J, Mao H, Zhao H et al (2012) Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China. Field Crops Res 135:89–96

    Article  Google Scholar 

  • Wang C, Zeng J, Li Y et al (2014) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65(9):2545–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waraich EA, Ahmad R, Halim A et al (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nut 12(2):221–244

    Article  Google Scholar 

  • Warman PR, Havard KA (1998) Yield, vitamin and mineral contents of organically and conventionally grown potatoes and sweet corn. Agric Ecosyst Environ 68(3):207–216

    Article  CAS  Google Scholar 

  • Waters BM, Pedersen JF (2009) Sorghum germplasm profiling to assist breeding and gene identification for biofortification of grain mineral and protein concentrations. The Proceedings of the International Plant Nutrition Colloquium XVI, University of California, Davis, Paper 1228

    Google Scholar 

  • Wei Y, Shohag MJI, Yang et al (2012a) Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. J Agr Food Chem 60(45):11433–11439

    Article  CAS  Google Scholar 

  • Wei Y, Shohag MJI, Yang X (2012b) Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar zinc fertilization. PLoS One 7(9):e45428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD, Cakmak I (2013) Linking agricultural production practices to improving human nutrition and health. Expert Paper Written for ICN2 Second International Conference on Nutrition Preparatory Technical Meeting, 13–15 November, 2013, Rome. http://www.fao.org/3/a–as574e.pdf. Accessed on 10 Aug 2019

  • Welsch R, Arango J, Bär C et al (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22(10):3348–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler TR, Batts GR, Ellis RH et al (1996) Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. J Agric Sci 127(1):37–48

    Article  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front Plant Sci 2:80

    Article  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR, Hammond JP et al (2012) Bio-fortification of potato tubers using foliar zinc-fertiliser. J Hortic Sci Biotechnol 87(2):123–129

    Article  CAS  Google Scholar 

  • White PJ, Thompson JA, Wright G et al (2017) Biofortifying Scottish potatoes with zinc. Plant Soil 411(1–2):151–165

    Article  CAS  Google Scholar 

  • White P, Pongrac P, Sneddon C et al (2018) Limits to the biofortification of leafy brassicas with zinc. Agriculture 8(3):32

    Article  CAS  Google Scholar 

  • WHO (2009). Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO global database on vitamin A deficiency. Geneva: World Health Organization

    Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7(7):631–644

    Article  CAS  PubMed  Google Scholar 

  • Wong JC, Lambert RJ, Wurtzel ET et al (2004) QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108(2):349–359

    Article  CAS  PubMed  Google Scholar 

  • Xiaoyan S, Yan Z, Shubin W (2012). Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. J Agric Biotechnol

    Google Scholar 

  • Xin-Min J, Xue-Yi C, Ji-Yong J (1997) Dynamics of environmental supplementation of iodine: four years’ experience of iodination of irrigation water in Hotien, Xinjiang, China. Arch Environ Health Int J 52(6):399–408

    Article  CAS  Google Scholar 

  • Xu J, Hu Q (2004) Effect of foliar application of selenium on the antioxidant activity of aqueous and ethanolic extracts of selenium-enriched rice. J Agr Food Chem 52(6):1759–1763

    Article  CAS  Google Scholar 

  • Xuan VT (2018) Rice production, agricultural research, and the environment. In: Kerkvliet BJT (ed) Vietnam’s rural transformation. Taylor and Francis, New York, pp 185–200

    Chapter  Google Scholar 

  • Yadava DK, Hossain F, Mohapatra T (2018) Nutritional security through crop biofortification in India: Status & future prospects. IJMR 148(5):621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet 42(4):322

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Moran DL, Jia HW et al (2002) Expression of a synthetic porcine α-lactalbumin gene in the kernels of transgenic maize. Transgenic Res 11(1):11–20

    Article  PubMed  Google Scholar 

  • Yang F, Chen L, Hu Q et al (2003) Effect of the application of selenium on selenium content of soybean and its products. Biol Trace Elem Res 93(1–3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Yang XW, Tian XH, Lu XC et al (2011) Impacts of phosphorus and zinc levels on phosphorus and zinc nutrition and phytic acid concentration in wheat (Triticum aestivum L.). J Sci Food Agr 91(13):2322–2328

    Article  CAS  Google Scholar 

  • Yang QQ, Zhang CQ, Chan ML et al (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67(14):4285–4296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zhang Z, Zhang T, Fahad S, Cui K, Nie L, Peng S, Huang J (2017) The effect of season-long temperature increases on rice cultivars grown in the central and southern regions of China. Front Plant Sci 8:1908. https://doi.org/10.3389/fpls.2017.01908

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye X, Al-Babili S, Klöti A et al (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    Article  CAS  PubMed  Google Scholar 

  • Yu O, Shi J, Hession AO et al (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63(7):753–763

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Peng P, Zhang X et al (2005) Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds. Food Nutr Bull 26(4_suppl3):S312–S316

    Article  Google Scholar 

  • Yuan L, Wu L, Yang C et al (2013) Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. J Sci Food Agr 93(2):254–261

    Article  CAS  Google Scholar 

  • Zahida Z, Hafiz FB, Zulfiqar AS, Ghulam MS, Fahad S, Muhammad RA, Hafiz MH, Wajid N, Muhammad S (2017) Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicol Environ Saf 144:11–18

    Article  CAS  Google Scholar 

  • Zeh M, Casazza AP, Kreft O et al (2001) Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol 127(3):792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YQ, Pang LL, Yan P et al (2013) Zinc fertilizer placement affects zinc content in maize plant. Plant Soil 372(1–2):81–92

    Article  CAS  Google Scholar 

  • Zhang L, Yang XD, Zhang YY et al (2014) Changes in oleic acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing. Int J Genomics:2014

    Google Scholar 

  • Zhao ZY, Glassman K, Sewalt V et al (2003) Nutritionally improved transgenic sorghum. In Vasil IK (ed) Plant biotechnology 2002 and beyond. Proceedings of the 10th IAPTC&B Congress June 23–28, 2002 Orlando. Springer, pp 413–416

    Google Scholar 

  • Zheng Z, Sumi K, Tanaka K et al (1995) The bean seed storage protein [beta]-phaseolin is synthesized, processed, and accumulated in the vacuolar type-II protein bodies of transgenic rice endosperm. Plant Physiol 109(3):777–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Cheng Z, Ai C et al (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5(4):10190

    Article  CAS  Google Scholar 

  • Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X (2009) Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118(7):1381–1390

    Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J et al (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105(47):18232–18237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou T, Xu N, Hu G et al (2014) Biofortification of soybean sprouts with zinc and bioaccessibility of zinc in the sprouts. J Sci Food Agr 94(14):3053–3060

    Article  CAS  Google Scholar 

  • Zou C, Du Y, Rashid A et al (2019) Simultaneous biofortification of wheat with zinc, iodine, selenium and iron through foliar treatment of a micronutrient cocktail in six countries. J Agric Food Chem 67(29):8096–8106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Aksoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maqbool, A. et al. (2020). Biofortification Under Climate Change: The Fight Between Quality and Quantity. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham. https://doi.org/10.1007/978-3-030-49732-3_9

Download citation

Publish with us

Policies and ethics