Skip to main content

Advertisement

Log in

Genetic Variation for Potato Tuber Micronutrient Content and Implications for Biofortification of Potatoes to Reduce Micronutrient Malnutrition

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Micronutrients are crucial to healthy growth and development, yet a large proportion of the world’s population suffers from micronutrient deficiencies. Biofortification of staple foods has tremendous potential to alleviate these deficiencies. Potato production in developing countries is increasing rapidly, and therefore, biofortification of potatoes for essential micronutrients may be feasible. The purpose of this study was to determine the amount of genetic variation for micronutrient content in potato germplasm. Eighteen potato clones, consisting of ‘Atlantic’ and 17 4x-2x hybrids between S. tuberosum and diploid hybrids of S. phureja-S. stenotomum, were grown in three locations (NC, VA, NJ) 2 years (2001, 2002). Samples of tuber tissue were analyzed for copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn). There were significant differences among clones for Cu, Fe, Mn and Zn. Clone x environment interactions were significant for Cu and Zn. Broad-sense heritability and its 95 % confidence interval for Cu was 0.65 (0.50–0.89); Fe was 0.49 (0.27–0.84); Mn was 0.84 (0.82–0.96); and Zn was 0.82 (0.73–0.94). Genetic variation for these four micronutrients is large, suggesting that the micronutrient content of potatoes can be improved through breeding.

Resumen

Los micronutrientes son cruciales para el crecimiento y desarrollo sanos, aun cuando una gran proporción de la población mundial sufre por deficiencias de micronutrientes. La biofortificación de alimentos básicos tiene un potencial tremendo para aliviar estas deficiencias. La producción de papa en países en desarrollo esta aumentando rápidamente, por lo tanto, la biofortificación de papa con micronutrientes esenciales puede ser factible. El propósito de este estudio fue determinar la cantidad de variación genética para el contenido de micronutrientes en germoplasma de papa. Diez y ocho clones de papa, consistentes en “Atlantic” y 17 híbridos 4x-2x entre S. tuberosum e híbridos diploides de S. phureja-S. stenotomum se cultivaron en tres localidades (NC, VA, NJ) en dos años (2001–2002). Se analizaron las muestras del tejido de tubérculo para cobre (Cu), hierro (Fe), manganeso (Mn) y zinc (Zn). Hubo diferencias significativas entre los clones para Cu, Fe, Mn, y Zn. Las interacciones clon x medio ambiente fueron significativas para Cu y Zn. La heredabilidad en amplio sentido y su intervalo de confianza de 95 % para Cu fue de 0.65 (0.50–0.89); el de Fe fue de 0.49 (0.27–0.84); el de Mn fue de 0.84 (0.82–0.96); y para Zn fue de 0.82 (0.73–0.94). La variación genética para estos tres micronutrientes es grande, lo que sugiere que el contenido de micronutrientes en papas puede mejorarse mediante mejoramiento genético.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, B.N., H. Atamna, and D.W. Killilea. 2005. Mineral and vitamin deficiences can accelerate the mitochondrial decay of aging. Molecular Aspects of Medicine 26: 363–378.

    Article  PubMed  CAS  Google Scholar 

  • Andre, C.M., M. Ghislain, P. Bertin, M. Oufir, M. del Rosario Herrera, L. Hoffmann, J.-F. Hausman, Y. Larondelle, and D. Evers. 2007. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. Agric Food Chemistry 55: 366–378.

    Article  CAS  Google Scholar 

  • Bamberg, J.B., and A. del Rio. 2005. Conservation of genetic resources. In Genetic improvement of solanaceous crops vol.1: Potato, ed. M.K. Razdan and A.K. Mattoo, 451. Enfield: Science Publishers, Inc.

    Google Scholar 

  • Banziger, M., and J. Long. 2000. The potential for increasing the iron and zinc density of maize through plant breeding. Food and Nutrition Bulletin 21: 397–400.

    Google Scholar 

  • Berger, M.M., and R. Chiolero. 1995. Relationships between copper, zinc and selenium intakes, and malondialdehyde excretion after major burns. Burns 23: 507–512.

    Article  Google Scholar 

  • Bouis, H.E. 2000. Enrichment of food staples through plant breeding: A new strategy for fighting micronutrient malnutrition. Nutrition 16: 701–704.

    Article  PubMed  CAS  Google Scholar 

  • Bouis, H.E. 2002. Plant breeding: A new tool for fighting micronutrient malnutrition. Journal of Nutrition 132: 491S–494S.

    PubMed  CAS  Google Scholar 

  • Bouis, H.E., R.D. Graham, and R.M. Welch. 1999. The CGIAR micronutrients project: Justification, history, objectives, and summary of findings. Improving human nutrition through agriculture: The role of international agricultural research. International Food Policy Research Institute. A workshop hosted by IRRI, Los Banos, Phillipines, Oct 5–7, 1999.

  • Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller Jr. 2010. Stability and broad-sense heritability of mineral content in potato: Iron. American Journal of Potato Research 87: 390–396.

    Article  CAS  Google Scholar 

  • Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller Jr. 2011. Stability and broad-sense heritability of mineral content in potato: Zinc. American Journal of Potato Research 88: 238–244.

    Article  CAS  Google Scholar 

  • Burgos, G., W. Amoros, M. Morote, J. Stangoulis, and M. Bonierbale. 2007. Iron and zinc concentration of native Andean potato cultivars from a human nutrition perspective. Journal of the Science of Food and Agriculture 87: 668–675.

    Article  CAS  Google Scholar 

  • Cakmak, I., O. Cakmak, S. Eker, A. Ozdemir, N. Watanabe, and H.J. Braun. 1999. Expression of high zinc efficiency of Aegilops tauschii and Triticum monococcum in synthetic hexaploid wheats. Plant and Soil 215: 203–209.

    Article  CAS  Google Scholar 

  • Chan, S., B. Gerson, and S. Subramaniam. 1998. The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clinics in Laboratory Medicine 18: 673–685.

    PubMed  CAS  Google Scholar 

  • Dallman, P.R. 1986. Biochemical basis for the manifestation of iron deficiency. Annual Review of Nutrition 6: 13–40.

    Article  PubMed  CAS  Google Scholar 

  • FAO. 2010. FAOSTAT. Production. Crops. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed June 2, 2011. Washington, D.C.

  • Food and Nutrition Board, Institute of Medicine. 2001. Manganese. Dietary reference intakes for vitamin A, vitamin K, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc, 394–419. Washington, D.C: National Academy Press.

    Google Scholar 

  • Graham, R., D. Senadhira, S. Beebe, C. Iglesias, and I. Monasterio. 1999. Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches. Field Crops Research 60: 57–80.

    Article  Google Scholar 

  • Kang, M.S. 1989. A new SAS program for calculating stability-variance parameters. Journal of Heredity 80: 415.

    Google Scholar 

  • Keen, C.L., and S. Zidenberg-Cherr. 1996. Manganese. In Present knowledge in nutrition, 7th ed, ed. E.E. Ziegler and L.J. Filer, 334–343. Washington, D.C: ILSI Press.

    Google Scholar 

  • Knapp, S.J., W.W. Stroup, and W.M. Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Science 25: 192–194.

    Article  Google Scholar 

  • LaFontaine, S., M.L. Ackland, and J.F.B. Mercer. 2010. Mammalian copper transporting P-type ATPases, ATP7A and ATP7B: Emerging roles. International Journal of Biochemistry & Cell Biology 42: 206–209.

    Article  CAS  Google Scholar 

  • Long, J.K., M. Banziger, and M.E. Smith. 2004. Diallel analysis of grain iron and zinc density in southern African-adapted maize inbreds. Crop Science 44: 2019–2026.

    Article  Google Scholar 

  • Looker, A.C., P.R. Dallman, M.D. Carroll, E.W. Gunter, and C.L. Johnson. 1997. Prevalence of iron deficiency in the United States. Journal of the American Medical Association 277: 973–976.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, J.E., W.H. Pfeiffer, and P. Beyer. 2008. Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology 11: 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Mills, H.A., and J.B. Jones. 1996. Plant analysis handbook II. Horticulture solutions. Athens: Micro–macro Publ., Inc.

    Google Scholar 

  • Monasterio, I., and R.D. Graham. 2000. Breeding for trace minerals in wheat. Food and Nutrition Bulletin 21: 392–396.

    Google Scholar 

  • Nestel, P., H.E. Bouis, J.V. Meenakshi, and W. Pfeiffer. 2006. Biofortification of staple food crops. Journal of Nutrition 136: 1064–1067.

    PubMed  CAS  Google Scholar 

  • Nyquist, W.E. 1991. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences 10: 235–322.

    Article  Google Scholar 

  • Ortiz-Monasterio, J.I., N. Palacios-Rojas, E. Meng, K. Pixley, R. Trethowan, and R.J. Pena. 2007. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science 46: 293–307.

    Article  CAS  Google Scholar 

  • Palacios, C. 2006. The role of nutrients in bone health, from A to Z. Critical Reviews in Food Science and Nutrition 46: 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, A.S., A. Miale, Z. Farid, H.H. Sanstead, A.R. Schulert, and W.J. Darby. 1963. Biochemical studies on dwarfism, hypogonadism and anemia. Archives of Internal Medicine 111: 407–428.

    Article  PubMed  CAS  Google Scholar 

  • Rivero, R.C., P.S. Hernandez, E.M.R. Rodriguez, J.D. Martin, and C.D. Romero. 2003. Mineral concentrations in cultivars of potatoes. Food Chemistry 83: 247–253.

    Article  CAS  Google Scholar 

  • Sterrett, S.B., K.G. Haynes, G.C. Yencho, M.R. Henninger, and B.T. Vinyard. 2006. 4x-2x potato clones with resistance or susceptibility to internal heat necrosis differ in tuber mineral status. Crop Science 46: 1471–1478.

    Article  CAS  Google Scholar 

  • True, R.H., J.M. Hogan, J. Augustin, S.J. Johnson, C. Teitzel, R.B. Toma, and R.L. Shaw. 1978. Mineral composition of freshly harvested potatoes. American Potato Journal 55: 511–519.

    Article  CAS  Google Scholar 

  • Walker, C.L.F., M. Ezzati, and R.E. Black. 2009. Global and regional child mortality and burden of disease attributable to zinc deficiency. European Journal of Clinical Nutrition 63: 591–597.

    Article  Google Scholar 

  • Warman, P.R., and K.A. Havard. 1998. Yield, vitamin and mineral contents of organically and conventionally grown potatoes and sweet corn. Agriculture, Ecosystems and Environment 68: 207–216.

    Article  CAS  Google Scholar 

  • Welch, R.M. 2002. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. Journal of Nutrition 132: 495S–499S.

    PubMed  Google Scholar 

  • Welch, R.M., and R.D. Graham. 2002. Breeding crops for enhanced micronutrient content. Plant and Soil 245: 205–214.

    Article  CAS  Google Scholar 

  • Welch, R.M., G.F. Combs Jr., and J.M. Duxbury. 1997. Toward a ‘greener’ revolution. Issues in Science and Technology 14: 50–58.

    Google Scholar 

  • Wood, R.J. 2000. Assessment of marginal zinc status in humans. Journal of Nutrition 130: 1350S–1354S.

    PubMed  CAS  Google Scholar 

  • World Health Organization. 2011. Nutrition: Micronutrient deficiencies. http://www.who.int/nutrition/topics/ida/en/ Accessed June 22, 2011. World Health Organization, Geneva, Switzerland.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Haynes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, K.G., Yencho, G.C., Clough, M.E. et al. Genetic Variation for Potato Tuber Micronutrient Content and Implications for Biofortification of Potatoes to Reduce Micronutrient Malnutrition. Am. J. Pot Res 89, 192–198 (2012). https://doi.org/10.1007/s12230-012-9242-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-012-9242-7

Keywords

Navigation