Skip to main content

Advertisement

Log in

Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plants are sessile beings, so the need of mechanisms to flee from unfavorable circumstances has provided the development of unique and sophisticated responses to environmental stresses. Depending on the degree of plasticity, many morphological, cellular, anatomical, and physiological changes occur in plants in response to abiotic stress. Phytohormones are small molecules that play critical roles in regulating plant growth and development, as well as stress tolerance to promote survival and acclimatize to varying environments. To congregate the challenges of salinity, temperature extremes, and osmotic stress, plants use their genetic mechanism and different adaptive and biological approaches for survival and high production. In the present attempt, we review the potential role of different phytohormones and plant growth-promoting rhizobacteria in abiotic stresses and summarize the research progress in plant responses to abiotic stresses at physiological and molecular levels. We emphasized the regulatory circuits of abscisic acid, indole acetic acid, cytokinins, gibberellic acid, salicylic acid, brassinosteroids, jasmonates, ethylene, and triazole on exposure to abiotic stresses. Current progress is exemplified by the identification and validation of several significant genes that enhanced crop tolerance to stress in the field. These findings will make the modification of hormone biosynthetic pathways for the transgenic plant generation with augmented abiotic stress tolerance and boosting crop productivity in the coming decades possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    CAS  Google Scholar 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129. doi:10.1105/tpc.108.058941

    CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    CAS  Google Scholar 

  • Ahmad F, Ahmad M, Khan S (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    CAS  Google Scholar 

  • Alvarez MI, Sueldo RJ, Barassi CA (1996) Effect of Azospirillum on coleoptiles growth in wheat seedlings under water stress. Cereal Res Commun 24:101–107

    Google Scholar 

  • Aly MM, El-Sabbagh S, El-Shouny W, Ebrahim MK (2001) Salt tolerance of maize under the effect of Azotobacter chroococcum and Streptomyces niveus. J Union Arab Biol 10:62–84

    Google Scholar 

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33:151–153

    CAS  Google Scholar 

  • Babaloa OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett. doi:10.1007/s10529-010-0347-0

    Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz K, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jonsen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    CAS  Google Scholar 

  • Boucaud J, Ungar IA (1976) Hormonal control of germination under saline conditions of three halophyte taxa in genus Suaeda. Physiol Plant 36:197–200

    Google Scholar 

  • Bray EA (2002) Abscisic acid regulation of gene expression during water-deficient stress in the era of Arabidopsis genome. Plant Cell Environ 25:153–161

    CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Soc Plant Physiol, Rockville, pp 1158–1249

    Google Scholar 

  • Chakrabarti N, Mukherji S (2003) Alleviation of NaCl stress by pretreatment with phytohormones in Vigna radiata. Biol Plant 46:589–594

    CAS  Google Scholar 

  • Chakraborty U, Tongden C (2005) Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Curr Sci 89:384–389

    CAS  Google Scholar 

  • Cheong JJ, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413

    CAS  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci U S A 92:4114–4119

    CAS  Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci U S A 89:4938–4941

    CAS  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

  • Dahmardeh M, Ghanbari A, Syasar B, Ramrodi M (2009) Effect of intercropping maize with cowpea on green forage yield and quality evaluation. Asian J Plant Sci 8:235–239

  • Dajic Z (2006) Salt stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of salt tolerance in plant. Springer, Netherlands, pp 41–99

    Google Scholar 

  • Dardanelli MS, Fernandez de Cordoba FJ, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG, Okon Y, Megìas M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

  • Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104:309–314

    CAS  Google Scholar 

  • Davies WJ, Zhang J, Yang J, Dodd IC (2010) Novel crop science to improve yield and resource use efficiency in water-limited agriculture. J Agric Sci. doi:10.1017/S0021859610001115

    Google Scholar 

  • Dela-Rosa IM, Maiti RK (1995) Biochemical mechanism in glossy sorghum lines for resistance to salinity stress. J Plant Physiol 146:515–519

    Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. Basic Biotechnol 3:1–5

    Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    CAS  Google Scholar 

  • Ebrahim M, Aly MM (2004) Physiological response of wheat to foliar application of zinc and inoculation with some bacterial fertilizers. J Plant Nutr 27:1–16

    Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    CAS  Google Scholar 

  • Ervin EH, Zhang XZ, Fike JH (2004) Ultraviolet-B radiation damage on Kentucky Bluegrass II: hormone supplement effects. Hortic Sci 39:1471–1474

    CAS  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    CAS  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015) Crop plant hormones and environmental stress. Sustainable Agriculture Reviews 15:371–400

  • Fletcher RA, Gill A, Davis TD, Sankhla N (2000) Triazoles as plant growth regulators and stress protectants. Hortic Rev 24:55–138

    CAS  Google Scholar 

  • Fukuda A, Tanaka Y (2006) Effects of ABA, auxin and gibberellin on the expression of genes for vacuolar H+ inorganic pyrophosphatase, H+ATPase subunit A, and Na+/H+ antiporter in barley. Plant Physiol Biochem 44:351–358

    CAS  Google Scholar 

  • Gilley A, Flecher RA (2007) Gibberellin antagonizes paclobutrazole induced stress protection in wheat seedlings. J Plant Physiol 103:200–207

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    CAS  Google Scholar 

  • Glick BR, Pasternak JJ (2003) Molecular biotechnology, 3rd edn. ASM Press, USA

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    CAS  Google Scholar 

  • Gomezcadenas A, Arbona V, Jacas J, Primomillo E, Talon M (2002) Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240

    CAS  Google Scholar 

  • Gonai T, Kawahara S, Tougou M, Satoh S, Hashiba T, Hirai N, Kawaide H, Kamiya Y, Yoshioka T (2004) Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J Exp Bot 55:111–118

    CAS  Google Scholar 

  • Greenberg BM, Huang XD, Gerwing P, Yu XM, Chang P, Wu SS, Gerhardt K, Nykamp J, Lu X and Glick B (2008) Phytoremediation of salt impacted soils: greenhouse and the field trials of plant growth promoting rhizobacteria (PGPR) to improve plant growth and salt phytoaccumulation. In: Proceeding of the 33rd AMOP Technical Seminar on Environmental Contamination and Response, Environment Canada, Ottawa, 2:627–637

  • Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21:204–210

    CAS  Google Scholar 

  • Hadiarto T, Tran LS (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310

    CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    CAS  Google Scholar 

  • Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB (2000) Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 123:1449–1457

    CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23:79–103

    CAS  Google Scholar 

  • Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53:27–32

    CAS  Google Scholar 

  • Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB (2009) Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. J Cereal Sci 49:12–23

    CAS  Google Scholar 

  • Hussain S, Khaliq A, Matloob A, Wahid MA, Afzal I (2013) Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environ 32:36–43

    CAS  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A (2006) Seed enhancement with cytokinins: changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul 50:29–39

    CAS  Google Scholar 

  • Iqbal N, Nazar R, Iqbal MRK, Masood A, Nafees AK (2011) Role of gibberellins in regulation of source sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007

    CAS  Google Scholar 

  • Javanmard A, Mohammadi-Nasab AD, Javanshir A, Moghaddam M, Janmohammadi H (2009) Forage yield and quality in intercropping of maize with different legumes as double-cropped. J Food Agric Environ 7:163–166

    Google Scholar 

  • Jia W, Wang Y, Zhang S, Zhang J (2002) Salt stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53:2201–2206

    CAS  Google Scholar 

  • Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Aust J Crop Sci 5:296–303

    CAS  Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    CAS  Google Scholar 

  • Kang GZ, Wang CH, Sun GC, Wang ZX (2003) Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15

    CAS  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282

    CAS  Google Scholar 

  • Karikalan L, Rajan SN, Gopi R, Sujatha BM, Pannersevalam R (1999) Induction of salt tolerance by triadimefon in pigeon pea (Cajanus cajan L.) Mill sp. Indian J Exp Biol 37:825–829

    CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    CAS  Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat. Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith D (2003) Photosynthetic response of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    CAS  Google Scholar 

  • Khan NA, Singh S, Nazar R, Lone PM (2007) The source–sink relationship in mustard. Asian Aust J Plant Sci Biotechnol 1:10–18

    Google Scholar 

  • Khodary SEA (2004) Effect of salicylic acid on growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Khripach V, Zhabinskii VN, de Groot AE (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    CAS  Google Scholar 

  • Kuiper D, Schuit J, Kuiper PJC (1990) Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals. Plant Soil 123:243–250

    CAS  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    CAS  Google Scholar 

  • Li KR, Wang HH, Han G, Wang QJ, Fan J (2007) Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water stress. New For 35:255–266

    CAS  Google Scholar 

  • Liu Y, Xu J, Ding Y, Wang Q, Li G, Wang S (2011) Auxin inhibits the outgrowth of tiller buds in rice (Oryza sativa L.) by downregulating OsIPT expression and cytokinin biosynthesis in nodes. Aust J Crop Sci 5:169–174

    CAS  Google Scholar 

  • Machackov C, Dewitte N, Van Onckelen W (1997) Diurnal fluctuation in ethylene formation in Chenopodiun rubrum. Plant Physiol 113:981–985

    Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, de Pascale S (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  Google Scholar 

  • Mahmoud YA, Ebrahium MK, Aly MM (2004) Influence of some plant extracts and microbioagents on some physiological traits of faba bean infected with Botrytis faba. Turk J Bot 7:21–30

    Google Scholar 

  • Masia A, Pitacco A, Braggio L, Giulivo C (1994) Hormonal responses to partial drying of the root system of Helianthus annuus. J Exp Bot 45:69–76

    CAS  Google Scholar 

  • Mason HS, Mullet JE (1990) Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2:569–579

    CAS  Google Scholar 

  • Masood A, Shah NA, Zeeshan M, Abraham G (2006) Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ Exp Bot 58:216–222

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    CAS  Google Scholar 

  • Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interact 19:1127–1137

    CAS  Google Scholar 

  • Merchan F, de Lorenzo L, González-Rizzo S, Niebel A, Megías M, Frugier F, Sousa C, Crespi M (2007) Analysis of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17

    CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  Google Scholar 

  • Mohammed AR, Tarpley L (2010) Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. Eur J Agron 33:117–123

    Google Scholar 

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Physiol 59:651–681

    CAS  Google Scholar 

  • Mussig C, Fischer S, Altmann T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129:1241–1251

    CAS  Google Scholar 

  • Pal M, Szalai G, Horvath E, Janda T, Paldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szeged 46:119–120

    Google Scholar 

  • Panneerselvam R, Muthukumarasamy M, Karikalan L (1997) Triadimefon enhance growth and net photosynthetic rate in NaCl stressed plant of Raphanus stivus L. Photosyntheica 34:605–609

    CAS  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 4:149–158

    Google Scholar 

  • Pedranzani H, Sierra-de-Grado R, Vigliocco A, Miersch O, Abdala G (2007) Cold and water stresses produce changes in endogenous jasmonates in two populations of Pinus pinaster Ait. Plant Growth Regul 52:111–116

    CAS  Google Scholar 

  • Pospíšilová J (2003a) Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica 41:49–56

    Google Scholar 

  • Pospíšilová J (2003b) Participitation of phytohormones in the stomatal regulation of gas exchange during water stress. Biol. Plant. 46:491–506

  • Radi AF, Shaddad MAK, El-Enany AE, Omran FM (2006) Interactive effects of plant hormones (GA3 or ABA) and salinity on growth and some metabolites of wheat seedlings. Develop Plant Soil Sci Plant Nutr 92:436–437

    Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    CAS  Google Scholar 

  • Remans R, Ramaekers L, Shelkens S, Hernandez G, Garcia A, Reyes GL, Mendez N, Toscano V, Mullin M, Galvez L, Vanderleyden J (2008) Effect of Rhizobium-Azospirillum co-inoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    CAS  Google Scholar 

  • Reyes LF, Cisneros-Zevallos L (2007) Electron-beam ionizing radiation stress effects on mango fruit (Mangifera indica L.) antioxidant constituents before and during post-harvest storage. J Agric Food Chem 55:6132–6139

    CAS  Google Scholar 

  • Ribaut JM, Pilet PE (1994) Water stress and indole-3yl-acetic acid content of maize roots. Planta 193:502–507

    CAS  Google Scholar 

  • Saikia SP, Dutta SP, Goswami A, Bahau BS, Kanjilal PB (2010) Role of Azospirillum in the improvement of legumes. Microbes Legum Improv. doi:10.1007/978-3-211-99753-6_16

    Google Scholar 

  • Saud S, Chen Y, Baowen L, Fahad S, Arooj S (2013) The different impact on the growth of cool season turf grass under the various conditions on salinity and drought stress. Int J Agric Sci Res 3(4):77–84

    Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y (2014) Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci World J. doi:10.1155/2014/368694

    Google Scholar 

  • Schilling G, Schiller C, Otto S (1991) Influence of brassinosteroids on organ relations and enzyme activities of sugar-beet plants. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: chemistry, bioactivity and applications. American Chem Soc, Washington, DC, pp 208–219

    Google Scholar 

  • Senaratna T, Touchell D, Bumm E, Dixon K (2000) Acetylsalicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    CAS  Google Scholar 

  • Shafi M, Bakht J, Hassan MJ, Din MR, Guoping Z (2009) Effect of Cadmium and salinity stress on growth and antioxidant enzymes activities of wheat. Bull Environ Contam Toxicol 82:772–776

  • Shahzadi N, Basharat A, Shahida H (2012) Growth promotion of Vigna mungo (L.) by Pseudomonas spp. exhibiting auxin production and ACC-deaminase activity. Ann Microbiol 62:411–417

    Google Scholar 

  • Sharma N, Abrams SR, Waterer DR (2005) Uptake, movement, activity, and persistence of an abscisic acid analog (80 acetylene ABA methyl ester) in marigold and tomato. J Plant Growth Regul 24:28–35

    CAS  Google Scholar 

  • Shaterian J, Georges F, Hussain A, Waterer D, De Jong H, Tanino KK (2005) Root to shoot communication and abscisic acid in calreticulin (CR) gene expression and salt-stress tolerance in grafted diploid potato clones. Environ Exp Bot 53:323–332

  • Sheehy JE, Elmido A, Centeno G, Pablico P (2005) Searching for new plant for climate change. J Agric Meteorol 60:463–468

    Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    CAS  Google Scholar 

  • Shi HZ, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550

    CAS  Google Scholar 

  • Shrivastava P, Saxena RR, Xalxo MS, Verulkar SB (2012) Effect of high temperature at different growth stages on rice yield and grain quality traits. J Rice Res 5:29–42

    Google Scholar 

  • Sinha SK, Srivastava SH, Tripathi RD (1993) Influence of some growth regulators and cations on inhibition of chlorophyll biosynthesis by lead in maize. Bull Environ Contam Toxicol 51:241–246

    CAS  Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  Google Scholar 

  • Staswick PE (1994) Storage proteins of vegetative plant tissues. Annu Rev Plant Physiol Plant Mol Biol 45:303–322

    CAS  Google Scholar 

  • Suwa R, Hakata H, Hara H, El-Shemy HA, Adu-Gyamfi JJ, Nguyen NT, Kanai S, Lightfoot DA, Mohapatra PK, Fujita K (2010) High temperature effects on photosynthetic partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol Biochem 48:124–130

    CAS  Google Scholar 

  • Szalai G, Tari I, Janda T, Pestenacz A, Paldi E (2002) Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol Plant 43:637–640

    Google Scholar 

  • Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227:517–526

    CAS  Google Scholar 

  • Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol 13:206–212

    Google Scholar 

  • Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236

    CAS  Google Scholar 

  • Tavili A, Zare S, Moosavi SA, Enayati A (2011) Effects of seed priming on germination characteristics of Bromus species under salt and drought conditions. Am Eurasian J Agric Environ Sci 10:163–168

    Google Scholar 

  • Thaler JS, Fidantsef AL, Bostock RM (2002) Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28:1131–1159

    CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    CAS  Google Scholar 

  • Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628

    CAS  Google Scholar 

  • Tripathi AK, Mishra BM, Tripathi P (1998) Salinity stress responses in plant growth promoting rhizobacteria. J Biosci 23:463–471

    CAS  Google Scholar 

  • Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002) Inhibition of biosynthesis and activity of nitrogenase in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44:363–367

    CAS  Google Scholar 

  • US Environmental Protection Agency (2000) Introduction to phytoremediation. EPA 600-R-99-107

  • Vardhini BV, Rao SSR (2003) Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul 41:25–31

    CAS  Google Scholar 

  • Vettakkorumakankav NA (1999) Crucial role for gibberellin in stress protecting of plants. Plant Cell Physiol 40:542–548

    CAS  Google Scholar 

  • Wang Y, Mopper S, Hasentein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    CAS  Google Scholar 

  • Wan-Hong C, Jun L, Xin-Jian H, Rui-Ling M, Hua-Lin Z, Shou-Yi C, Jin-Song Z (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Google Scholar 

  • Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134:769–776

    CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Physiol 59:225–251

    CAS  Google Scholar 

  • Yang ZM, Wang J, Wang SH, Xu LL (2003) Salicylic acid induced aluminium tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–174

    CAS  Google Scholar 

  • Yin Y, Li S, Liao W, Lu Q, Wen X, Lu C (2010) Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. J Plant Physiol 167:959–966

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58:811–815

    CAS  Google Scholar 

  • Zhao HJ, Lin XW, Shi HZ, Chang SM (1995) The regulating effect of phenolic compounds on the physiological characteristics and yield of soybeans. Acta Agron Sin 21:351–355

    Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 53:247–273

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the funding provided by the Key Technology Program R&D of China (Project No. 2012BAD04B12) and MOA Special Fund for Agro-Scientific Research in the Public Interest of China (No. 201103003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Huang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahad, S., Hussain, S., Bano, A. et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22, 4907–4921 (2015). https://doi.org/10.1007/s11356-014-3754-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3754-2

Keywords

Navigation