Skip to main content
Log in

Enhancing beta-carotene content in potato by rnai-mediated silencing of the beta-carotene hydroxylase gene

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Plant carotenoids are lipid soluble pigments that play key roles in numerous plant functions. They also play significant roles in the human diet by serving as precursors for vitamin A synthesis and by reducing the occurrence of certain diseases. The purpose of this work was to identify novel methods for enhancing betacarotene content in potato, a major staple food crop. In particular, we used RNA interference (RNAi) to silence the beta-carotene hydroxylase gene (bch), which converts beta-carotene to zeaxanthin. Agrobacterium tumefaciens-mediated transformation was employed to introduce two RNAi constructs into three different potato lines (‘Yema de Huevo’, 91E22, and ‘Desiree’). One construct contained the tuber-specific granulebound starch synthase (GBSS) promoter, and the other contained the strong constitutive cauliflower mosaic virus 35S (CaMV 35S) promoter. Eighty-six percent of the silenced lines had altered carotenoid profiles, as revealed by HPLC. Beta-carotene content was increased from trace amounts in wild type tubers up to 331 μg 100 g1 fresh weight. In addition, some transformants exhibited a significant decrease in zeaxanthin content and/or an increase in lutein. In general, transformants derived from the GBSS construct contained more beta-carotene than CaMV 35S transformants. Reverse-transcriptase PCR (RT-PCR) analysis of bch RNA abundance in tubers demonstrated that the extent of bch silencing varied between transformants, and was in most cases associated with the level of beta-carotene. Similarly, RT-PCR showed that bch silencing also occurred in leaves, but primarily in the CaMV 35S lines. These results demonstrate that silencing bch has the potential to increase the content of two health-promoting carotenoids, betacarotene and lutein, in potato.

Resumen

Los carotenoides vegetales son pigmentos solubles que juegan un rol importante en numerosas funciones de la planta. También juegan un rol significativo en la dieta humana, pues sirven como precursores de la síntesis de vitamina A y reducen la presencia de ciertas enfermedades. El propósito de este trabajo fue de identificar métodos nuevos para incrementar el contenido de betacaroteno en papa, un cultivo alimenticio importante de consumo diario. Particularmente hemos utilizado la RNA interferencia (RNAi) para silenciar el gen betacaroteno hidroxilasa (bch), el cual convierte el betacaroteno en zeaxantina. Se empleó la transformacion mediada por Agrobactrium tumefaciens para introducir dos construcciones de RNAi en tres diferentes líneas de papa (‘Yema de huevo’, 91E22 y ‘Desiree’). Una construcción contenía el promotor específico del tubérculo ligado a gránulo de sintasa del almidón (GBSS) y el otro contenía el promotor constitutive del mosaico de la coliflor 35S (CaMV 35S). El 85% de las líneas silenciadas tuvieron carotenoides de perfiles alterados, tal como lo revelado por HPCL. El contenido de beta-caroteno se incrementó de trazas en tubérculos tipo silvestre hasta 33.1 ¼g/100 g-1 de peso fresco. Además, algunos transformantes exhibieron una significativa disminucion en el contenido de zeaxantina y/o un aumento en luteína. En general, los transformantes derivados del GBSS, contenían más beta-caroteno que los de CaMV 35S. El análisis reverso transcriptasa PCR (RT-PCR) de abundancia de bch RNA en tubérculos demostró que la cantidad de silenciamiento bch varió entre transformantes y fue en muchos casos asociado con el nivel de beta-caroteno. Similarmente, el RT-PCR mostró que el silenciamiento bch también ocurrió en las hojas, pero principalmente en las líneas CaMV 35S. Estos resultados demuestran que el silenciar el bch tiene potencial para incrementar dos carotenoides promotores de la salud, el betacaroteno y la luteína, en papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alba R, P Payton, Z Fei, R McQuinn, P Debbie, GB Martin, SD Tanksley and JJ Giovannoni. 2005. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965.

    Article  PubMed  CAS  Google Scholar 

  • Barber N. 2003. The tomato: An important part of the urologist’s diet? BJU Int 91:307–309.

    Article  PubMed  CAS  Google Scholar 

  • Becker D, E Kemper, J Schell and 0R Masterson. 1992. New plant binary vectors with selectable markers located proximal to the left TDNA border. Plant Mol Biol 20:1195–1197.

    Article  PubMed  CAS  Google Scholar 

  • Bonierbale MW, RL Plaisted and SD Tanksley. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103.

    PubMed  Google Scholar 

  • Breithaupt DE and A Bamedi. 2002. Carotenoids and carotenoid esters in potatoes(Solanum tuberosum L.): New insights into an ancient vegetable. J Agric Food Chem 50:7175–7181.

    Article  PubMed  CAS  Google Scholar 

  • Breithaupt DE, P Weller, M Wolters and A Hahn. 2003. Plasma response to a single dose of dietary β-cryptoxanthin esters from papaya(Carica papaya L.) or non-esterified β-cryptoxanthin in adult human subjects: A comparative study. Br J Nutr 52:575–581.

    Google Scholar 

  • Brown CR, CG Edwards, C-P Yang and BB Dean. 1993. Orange flesh trait in potato: Inheritance and carotenoid content. J Amer Soc HortSci 118:145–150.

    CAS  Google Scholar 

  • Brown CR, TS Kim, Z Ganga, K Haynes, D De Jong, M Jahn, I Paran and W De Jong. 2006. Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxlyase polymorphism. Amer J Potato Res 83:365–372.

    Article  CAS  Google Scholar 

  • Carrington JC, DD Freed and AJ Leinicke. 1991. Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein. Plant Cell 3:953–962.

    Article  PubMed  CAS  Google Scholar 

  • Chang S, J Puryear and J Cairney. 1993. Simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116.

    Article  CAS  Google Scholar 

  • Chuang C and EM Meyerowitz. 2000. Specific and heritable genetic interference by double-stranded RNA inArabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990.

    Article  PubMed  CAS  Google Scholar 

  • Combs GF Jr. 1992. The Vitamins: Fundamental Aspects in Nutrition and Health. Academic Press, Inc., San Diego.

    Google Scholar 

  • Cunningham FX and E Gantt. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Bio 49:557–583.

    Article  CAS  Google Scholar 

  • Diretto G, R Tavazza, R Welsch, D Pizzichini, G Mourgues, V Papacchioli, P Beyer and G Giuliano. 2006. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6:1–21.

    Article  CAS  Google Scholar 

  • Ducreux LJ, WL Morris, PE Hedley, T Shepherd, HV Davies, S Millam and MA Taylor. 2005. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 56:81–89.

    PubMed  CAS  Google Scholar 

  • Fishwick MJ and A Wright. 1980. Isolation and characterization of amyloplast envelope membranes fromSolarium tuberosum. Phytochemistry 19:55–59.

    Article  CAS  Google Scholar 

  • Fraser PD and PM Bramley. 2004. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265.

    Article  PubMed  CAS  Google Scholar 

  • Giovannucci E, A Ascherio, EB Rimm, MJ Stampfer, GA Colditz and WC Willett. 1995. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 87:1767–1776.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TW. 1980. Carotenoids.In: E Bell, BV Charlwood (eds), Encyclopedia of Plant Physiology. Springer-Verlag, New York, pp 257- 287.

    Google Scholar 

  • Hirshberg J. 1998. Molecular biology of carotenoid biosynthesis.In: G Britton, S Liaaen-Jensen, H Pfander (eds), Carotenoids. Birkhaeuser Verlag, Berlin, pp 149–194.

    Google Scholar 

  • Krinsky NI, JT Landrum and RA Bone. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201.

    Article  PubMed  CAS  Google Scholar 

  • Kuipers AG, WJ Soppe, E Jacobsen and RG Visser. 1994. Field evaluation of transgenic potato plants expressing an antisense granulebound starch synthase gene: Increase of the antisense effect during tuber growth. Plant Mol Biol 26:1759–1773.

    Article  PubMed  CAS  Google Scholar 

  • Marano MR, EC Serra, EG Orellano and N Carrillo. 1993. The path of chromoplast development in fruits and flowers. Plant Science 94:1–17.

    Article  CAS  Google Scholar 

  • Mayne ST. 1996. Beta-carotene, carotenoids, and disease prevention in humans. Faseb J 10:690–701.

    PubMed  CAS  Google Scholar 

  • Murashige T and F Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Odell JT, F Nagy and NH Chua. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812.

    Article  PubMed  CAS  Google Scholar 

  • Osganian SK, MJ Stampfer, E Rimm, D Spiegelman, JE Manson and WC Willett. 2003. Dietary carotenoids and risk of coronary artery disease in women. Am J Clin Nutr 77:1390–1399.

    PubMed  CAS  Google Scholar 

  • Rock CL, RA Jacob and PE Bowen. 1996 Update on the biological characteristics of the antioxidant micronutrients: Vitamin C, vitamin E, and the carotenoids. J Am Diet Assoc 9:693–702.

    Article  Google Scholar 

  • Romer S, J Lubeck, F Kauder, S Steiger, C Adomat and G Sandmann. 2002. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metabolic Engineering 4:263–272.

    Article  PubMed  CAS  Google Scholar 

  • Ruperti B, C Bonghi, A Rasori, A Ramina and P Tonutti. 2001. Characterization and expression of two members of the peach 1- aminocyclopropane-1-carboxylate oxidase gene family. Physiol Plant 111:336–344.

    Article  PubMed  CAS  Google Scholar 

  • Seddon J, UA Ajani, RD Sperduto, R Hiller, N Blair, TC Burton, MD Farber, ES Gragoudas, J Haller and DT Miller. 1994. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 272:1413–1420.

    Article  PubMed  CAS  Google Scholar 

  • Thorup TA, B Tanyolac, KD Livingstone, S Popovsky, I Paran and M Jahn. 2000. Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Nati Acad Sci USA 97:11192–11197.

    Article  CAS  Google Scholar 

  • Steege van der G, M Nieboer, J Swaving and MJ Tempelaar. 1992. Potato granule-bound starch synthase promoter-controlled GUS expression: Regulation of expression after transient and stable transformation. Plant Mol Biol 20:19–30.

    Article  PubMed  Google Scholar 

  • Visser RG, I Somhorst, GJ Kuipers, NJ Ruys, WJ Feenstra and E Jacobsen. 1991. Inhibition of the expression of the gene for granulebound starch synthase in potato by antisense constructs. Mol Gen Genet 225:289–296.

    Article  PubMed  CAS  Google Scholar 

  • Visser RG, A Stolte and E Jacobsen. 1991. Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Mol Biol 17:691–699.

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM and CA Helliwell. 2003. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38.

    Article  PubMed  CAS  Google Scholar 

  • West CE, A Eilander and M vanLieshout. 2002. Consequences of revised estimates of carotenoid bioefficacy for dietary control of vitamin A deficiency in developing countries. J Nutr 132:2920- 2926.

    Google Scholar 

  • West KP Jr. 2002. Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr 132:2857–2866.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Van Eck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Eck, J., Conlin, B., Garvin, D.F. et al. Enhancing beta-carotene content in potato by rnai-mediated silencing of the beta-carotene hydroxylase gene. Amer J of Potato Res 84, 331–342 (2007). https://doi.org/10.1007/BF02986245

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986245

Additional Key Words

Navigation