Skip to main content

Monitoring of Microalgal Processes

  • Chapter
  • First Online:
Microalgae Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 153))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malcata FX (2011) Microalgae and biofuels: a promising partnership? Trends Biotechnol 29:542–549

    Article  CAS  Google Scholar 

  2. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotech 21:277–286

    Article  CAS  Google Scholar 

  3. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  4. Masojidek J, Torzillo G (2009) Mass cultivation of freshwater microalgae. In: Jorgensen SE (ed), Applications in ecological engineering. Oxford Elsevier B.V., Oxford, pp 176–186

    Google Scholar 

  5. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  6. Hunt RW, Zavalin A, Bhatnagar A, Chinnasamy S, Das KC (2009) Electromagnetic biostimulation of living cultures for biotechnology, biofuel and bioenergy applications. Int J Mol Sci 10:4515–4558

    Article  CAS  Google Scholar 

  7. Han YC, Wen QX, Chen ZQ, Li PF (2011) Review of methods used for microalgal lipid-content analysis. Energy Procedia 12:944–950

    Article  Google Scholar 

  8. Lee TH, Chang JS, Wang HY (2013) Current developments in high-throughput analysis for microalgae cellular contents. Biotechnol J 8:1301–1314

    Article  CAS  Google Scholar 

  9. ABO, Technical Standards Committee (2013) Industrial algae measurements, version 6.0. Algae Biomass Organization (ABO), San Diego, 28 p. http://www.algaebiomass.org/resource-center/technical-standards/introduction/ Accessed 19 May 2015

  10. Posten C (2012) Design and Performance Parameters of Photobioreactors. Technikfolgenabschätzung – Theorie und Praxis (TATuP) 21:38–45

    Google Scholar 

  11. Roquette Klötze GmbH and Co. KG (2011), Microalgae cultivated in a 500 km long system of glass tubes, http://www.algomed.de/index.php?lang=eng&op=algenfarm_anlage. Accessed 19 May 2015

  12. van Beilen JB (2010) Why microalgal biofuels won’t save the internal combustion machine. Biofuel Bioprod Bior 4:41–52

    Article  CAS  Google Scholar 

  13. Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886

    Article  CAS  Google Scholar 

  14. Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337

    Article  CAS  Google Scholar 

  15. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  16. Yen H-W, Hu IC, Chen C-Y, Chang J-S (2014) Chapter 2—design of photobioreactors for algal cultivation. In: Pandey A, Lee D-J, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 23–45

    Chapter  Google Scholar 

  17. Nedbal L, Trtilek M, Cerveny J, Komarek O, Pakrasi HB (2008) A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng 100:902–910

    Article  CAS  Google Scholar 

  18. Cerveny J, Setlik I, Trtilek M, Nedbal L (2009) Photobioreactor for cultivation and real-time, in-situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng Life Sci 9:247–253

    Article  CAS  Google Scholar 

  19. Cuaresma M, Janssen M, Vilchez C, Wijffels RH (2011) Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour Technol 102:5129–5137

    Article  CAS  Google Scholar 

  20. Dillschneider R, Posten C (2013) A linear programming approach for modeling and simulation of growth and lipid accumulation of phaeodactylum tricornutum. Energies 6:5333–5356

    Article  CAS  Google Scholar 

  21. Malapascua JRF, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140

    Article  Google Scholar 

  22. Kliphuis AMJ, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696

    Article  CAS  Google Scholar 

  23. Dillschneider R, Steinweg C, Rosello-Sastre R, Posten C (2013) Biofuels from microalgae: photoconversion efficiency during lipid accumulation. Bioresour Technol 142:647–654

    Article  CAS  Google Scholar 

  24. Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF (2009) Sensors in disposable bioreactors status and trends. Adv Biochem Eng Biot 115:145–169

    CAS  Google Scholar 

  25. Bluma A, Hopfner T, Prediger A, Glindkamp A, Beutel S, Scheper T (2011) Process analytical sensors and image-based techniques for single-use bioreactors. Eng Life Sci 11:550–553

    Article  CAS  Google Scholar 

  26. Slegers PM, Wijffels RH, van Straten G, van Boxtel AJB (2011) Design scenarios for flat panel photobioreactors. Appl Energ 88:3342–3353

    Article  CAS  Google Scholar 

  27. Quinn JC, Turner CW, Bradley TH (2012) Scale-up of flat plate photobioreactors considering diffuse and direct light characteristics. Biotechnol Bioeng 109:363–370

    Article  CAS  Google Scholar 

  28. Franz A, Lehr F, Posten C, Schaub G (2012) Modeling microalgae cultivation productivities in different geographic locations—estimation method for idealized photobioreactors. Biotechnol J 7:546–557

    Article  CAS  Google Scholar 

  29. Slegers PM, Lösing MB, Wijffels RH, van Straten G, van Boxtel AJB (2013) Scenario evaluation of open pond microalgae production. Algal Res 2:358–368

    Article  Google Scholar 

  30. Schmidt-Hager J, Ude C, Findeis M, John GT, Scheper T, Beutel S (2014) Noninvasive online biomass detector system for cultivation in shake flasks. Eng Life Sci 14:467–476

    Article  CAS  Google Scholar 

  31. Noack K, Eskofier B, Kiefer J, Dilk C, Bilow G, Schirmer M, Buchholz R, Leipertz A (2013) Combined shifted-excitation Raman difference spectroscopy and support vector regression for monitoring the algal production of complex polysaccharides. Analyst 138:5639–5646

    Article  CAS  Google Scholar 

  32. Merzlyak MN, Chivkunova OB, Melo TB, Naqvi KR (2002) Does a leaf absorb radiation in the near infrared (780–900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves. Photosynth Res 72:263–270

    Article  CAS  Google Scholar 

  33. van den Hoek C, Mann D, Jahns HM (1995) Algae. An introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  34. Papageorgiou GC, Govindjee (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Book  Google Scholar 

  35. Nadadoor VR, De la Hoz Siegler H, Shah SL, McCaffrey WC, Ben-Zvi A (2012) Online sensor for monitoring a microalgal bioreactor system using support vector regression. Chemometrics Intell Lab Syst 110:38–48

    Article  CAS  Google Scholar 

  36. Su CH, Fu CC, Chang YC, Nair GR, Ye JL, Chu IM, Wu WT (2008) Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis. Biotechnol Bioeng 99:1034–1039

    Article  CAS  Google Scholar 

  37. Scheper T, Reardon KF (1992) Sensors in Biotechnology. In: Goepel W, Hesse J, Zemel JN (eds) Sensors: a comprehensive survey. VCH Verlagsgesellschaft, Weinheim, pp 1023–1046

    Google Scholar 

  38. Suh IS, Lee CG (2003) Photobioreactor engineering: design and performance. Biotechnol Bioproc Eng 8:313–321

    Article  CAS  Google Scholar 

  39. Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536

    Article  CAS  Google Scholar 

  40. Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49:3516–3526

    Article  CAS  Google Scholar 

  41. Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energ 88:3389–3401

    Article  CAS  Google Scholar 

  42. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  CAS  Google Scholar 

  43. Suh IS, Lee SB (2003) A light distribution model for an internally radiating photobioreactor. Biotechnol Bioeng 82:180–189

    Article  CAS  Google Scholar 

  44. Doucha J, Livansky K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117

    Article  CAS  Google Scholar 

  45. Grobbelaar JU (2010) Microalgal biomass production: challenges and realities. Photosynth Res 106:135–144

    Article  CAS  Google Scholar 

  46. Ketheesan B, Nirmalakhandan N (2011) Development of a new airlift-driven raceway reactor for algal cultivation. Appl Energ 88:3370–3376

    Article  CAS  Google Scholar 

  47. Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101:6751–6760

    Article  CAS  Google Scholar 

  48. Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  49. Masojidek J, Prasil O (2010) The development of microalgal biotechnology in the Czech Republic. J Ind Microbiol Biotechnol 37:1307–1317

    Article  CAS  Google Scholar 

  50. Sandnes JM, Ringstad T, Wenner D, Heyerdahl PH, Kallqvist I, Gislerod HR (2006) Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors. J Biotechnol 122:209–215

    Article  CAS  Google Scholar 

  51. Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A (2010) An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour Technol 101:6768–6777

    Article  CAS  Google Scholar 

  52. Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen UP (2005) A photobioreactor system for computer controlled cultivation of microalgae. J Appl Phycol 17:535–549

    Article  CAS  Google Scholar 

  53. Solovchenko A, Pogosyan S, Chivkunova O, Selyakh I, Semenova L, Voronova E, Scherbakov P, Konyukhov I, Chekanov K, Kirpichnikov M, Lobakova E (2014) Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res Part B 6:234–241

    Google Scholar 

  54. Havlik I, Lindner P, Scheper T, Reardon KF (2013) On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnol 31:406–414

    Article  CAS  Google Scholar 

  55. Kromkamp JC, Beardall J, Sukenik A, Kopecky J, Masojidek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquat Microb Ecol 56:309–322

    Article  Google Scholar 

  56. Sukenik A, Beardall J, Kromkamp JC, Kopecky J, Masojidek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol 56:297–308

    Article  Google Scholar 

  57. Garcia-Malea MC, Acien FG, Fernandez JM, Ceron MC, Molina E (2006) Continuous production of green cells of Haematococcus pluvialis: modeling of the irradiance effect. Enzyme Microb Technol 38:981–989

    Article  CAS  Google Scholar 

  58. Lopez MCGM, Sanchez ED, Lopez JLC, Fernandez FGA, Sevilla JMF, Rivas J, Guerrero MG, Grima EM (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342

    Article  CAS  Google Scholar 

  59. Tebbani S, Lopes F, Filali R, Dumur D, Pareau D (2014) Nonlinear predictive control for maximization of CO2 bio-fixation by microalgae in a photobioreactor. Bioprocess Biosyst Eng 37:83–97

    Article  CAS  Google Scholar 

  60. Heaven S, Banks CJ, Zotova EA (2005) Light attenuation parameters for waste stabilisation ponds. Water Sci Technol 51:143–152

    CAS  Google Scholar 

  61. Masojidek J, Sergejevova M, Rottnerova K, Jirka V, Korecko J, Kopecky J, Zat’kova I, Torzillo G, Stys D (2009) A two-stage solar photobioreactor for cultivation of microalgae based on solar concentrators. J Appl Phycol 21:55–63

    Article  CAS  Google Scholar 

  62. Kliphuis AMJ, Janssen M, van den End EJ, Martens DE, Wijffels RH (2011) Light respiration in Chlorella sorokiniana. J Appl Phycol 23:935–947

    Article  CAS  Google Scholar 

  63. Melnicki MR, Pinchuk GE, Hill EA, Kucek LA, Stolyar SM, Fredrickson JK, Konopka AE, Beliaev AS (2013) Feedback-controlled LED photobioreactor for photophysiological studies of cyanobacteria. Bioresour Technol 134:127–133

    Article  CAS  Google Scholar 

  64. Barsanti L, Gualtieri P (2006) Algae. Anatomy, Biochemistry, and Biotechnology. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  65. Livansky K, Doucha J (1998) Influence of solar irradiance, culture temperature and CO2 supply on daily course of O2 evolution by Chlorella mass cultures in outdoor open thin-layer culture units. Arch Hydrobiol Suppl Algol Stud 89:137–149

    Google Scholar 

  66. Li J, Xu S, Su WW (2003) Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochem Eng J 14:51–65

    Article  CAS  Google Scholar 

  67. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  68. Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158

    Article  CAS  Google Scholar 

  69. Bosma R, de Vree JH, Slegers PM, Janssen M, Wijffels RH, Barbosa MJ (2014) Design and construction of the microalgal pilot facility AlgaePARC. Algal Res Part B 6:160–169

    Google Scholar 

  70. Obata M, Toda T, Taguchi S (2009) Using chlorophyll fluorescence to monitor yields of microalgal production. J Appl Phycol 21:315–319

    Article  CAS  Google Scholar 

  71. Jiménez C, Cossío BR, Niell FX (2003) Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221:331–345

    Article  Google Scholar 

  72. Torzillo G, Pushparaj B, Masojidek J, Vonshak A (2003) Biological constraints in algal biotechnology. Biotechnol Bioproc Eng 8:338–348

    Article  CAS  Google Scholar 

  73. Ugwu CU, Aoyagi H (2008) Influence of shading inclined tubular photobioreactor surfaces on biomass productivity of C. sorokiniana. Photosynthetica 46:283–285

    Article  Google Scholar 

  74. Livansky K, Doucha J, Hu HJ, Li YG (2006) CO2 partial pressure—pH relationships in the medium and relevance to CO2 mass balance in outdoor open thin-layer Arthrospira (Spirulina) cultures. Arch Hydrobiol 165:365–381

    Article  CAS  Google Scholar 

  75. Belkin S, Boussiba S (1991) Resistance of Spirulina platensis to Ammonia at High pH Values. Plant Cell Physiol 32:953–958

    CAS  Google Scholar 

  76. De Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672

    Article  CAS  Google Scholar 

  77. Berenguel M, Rodriguez F, Acien FG, Garcia JL (2004) Model predictive control of pH in tubular photobioreactors. J Process Contr 14:377–387

    Article  CAS  Google Scholar 

  78. Sanchez JLG, Berenguel M, Rodriguez F, Sevilla JMF, Alias CB, Fernandez FGA (2003) Minimization of carbon losses in pilot-scale outdoor photobioreactors by model-based predictive control. Biotechnol Bioeng 84:533–543

    Article  CAS  Google Scholar 

  79. Orellana G, Haigh D (2008) New trends in fiber-optic chemical and biological sensors. Curr Anal Chem 4:273–295

    Article  CAS  Google Scholar 

  80. Sandifer JR, Voycheck JJ (1999) A review of biosensor and industrial applications of pH-ISFETs and an evaluation of Honeywell’s “DuraFET”. Mikrochim Acta 131:91–98

    Article  CAS  Google Scholar 

  81. Malinowski J, Geiger EJ (2013) Development of a wireless sensor network for algae cultivation using ISFET pH probes. Algal Res 4:19–22

    Article  Google Scholar 

  82. Grobbelaar JU (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? J Appl Phycol 19:591–598

    Article  CAS  Google Scholar 

  83. Lee YK, Ding SY, Low CS, Chang YC, Forday WL, Chew PC (1995) Design and performance of an alpha-type tubular photobioreactor for mass cultivation of microalgae. J Appl Phycol 7:47–51

    Article  CAS  Google Scholar 

  84. Baquerisse D, Nouals S, Isambert A, dos Santos PF, Durand G (1999) Modelling of a continuous pilot photobioreactor for microalgae production. J Biotechnol 70:335–342

    Article  CAS  Google Scholar 

  85. Doucha J, Livansky K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826

    Article  CAS  Google Scholar 

  86. Janata J (2009) Principles of chemical sensors, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  87. Hill GA (2006) Measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe. Ind Eng Chem Res 45:5796–5800

    Article  CAS  Google Scholar 

  88. Moran D, Tirsgard B, Steffensen JF (2010) The accuracy and limitations of a new meter used to measure aqueous carbon dioxide. Aquacult Eng 43:101–107

    Article  Google Scholar 

  89. Borges MT, Domingues JO, Jesus JM, Pereira CM (2012) Direct and continuous dissolved CO2 monitoring in shallow raceway systems: from laboratory to commercial-scale applications. Aquacult Eng 49:10–17

    Article  Google Scholar 

  90. Nedbal L, Cerveny J, Keren N, Kaplan A (2010) Experimental validation of a nonequilibrium model of CO2 fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor. J Ind Microbiol Biotechnol 37:1319–1326

    Article  CAS  Google Scholar 

  91. Zosel J, Oelssner W, Decker M, Gerlach G, Guth U (2011) The measurement of dissolved and gaseous carbon dioxide concentration. Meas Sci Technol 22

    Google Scholar 

  92. Livansky K (1996) Effect of O2, CO2 and temperature on the light saturated growth of Scenedesmus obliquus. Arch Hydrobiol Suppl Algol Stud 82:69–82

    Google Scholar 

  93. Lindner P, Endres C, Bluma A, Höpfner T, Glindkamp A, Haake C, Landgrebe D, Riechers D, Baumfalk R, Hitzmann B, Scheper T, Reardon KF (2011) Disposable Sensor Systems. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 67–81

    Chapter  Google Scholar 

  94. Brindley C, Acien FG, Fernandez-Sevilla JM (2010) The oxygen evolution methodology affects photosynthetic rate measurements of microalgae in well-defined light regimes. Biotechnol Bioeng 106:228–237

    CAS  Google Scholar 

  95. Bosma R, van Zessen E, Reith JH, Tramper J, Wijffels RH (2007) Prediction of volumetric productivity of an outdoor photobioreactor. Biotechnol Bioeng 97:1108–1120

    Article  CAS  Google Scholar 

  96. Ugwu CU, Aoyagi H, Uchiyama H (2007) Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 45:309–311

    Article  Google Scholar 

  97. Vonshak A, Laorawat S, Bunnag B, Tanticharoen M (2014) The effect of light availability on the photosynthetic activity and productivity of outdoor cultures of Arthrospira platensis (Spirulina). J Appl Phycol 26:1309–1315

    Article  CAS  Google Scholar 

  98. YSI Inc. (2009) The dissolved oxygen handbook. YSI Inc., Yellow Springs, Ohio, USA, 43 p., https://www.ysi.com/weknowdo (19.05.2015)

  99. Collos Y, Harrison PJ (2014) Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar Pollut Bull 80:8–23

    Article  CAS  Google Scholar 

  100. Powell N, Shilton AN, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42:5958–5962

    Article  CAS  Google Scholar 

  101. Eriksen NT, Iversen JJL (1995) Online determination of pigment composition and biomass in cultures of microalgae. Biotechnol Tech 9:49–54

    Article  CAS  Google Scholar 

  102. Eriksen NT, Geest T, Iversen JJL (1996) Phototrophic growth in the lumostat: A photo-bioreactor with on-line optimization of light intensity. J Appl Phycol 8:345–352

    Article  CAS  Google Scholar 

  103. Bao YL, Wen SM, Cong W, Wu X, Ning ZX (2012) An optical-density-based feedback feeding method for ammonium concentration control in Spirulina platensis cultivation. J Microbiol Biotechnol 22:967–974

    Article  CAS  Google Scholar 

  104. Jiménez C, Cossío BR, Labella D, Xavier Niell F (2003) The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217:179–190

    Article  Google Scholar 

  105. Chioccioli M, Hankamer B, Ross IL (2014) Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS One 9:e97269

    Article  CAS  Google Scholar 

  106. Quinn J, de Winter L, Bradley T (2011) Microalgae bulk growth model with application to industrial scale systems. Bioresour Technol 102:5083–5092

    Article  CAS  Google Scholar 

  107. Lucker BF, Hall CC, Zegarac R, Kramer DM (2014) The environmental photobioreactor (ePBR): an algal culturing platform for simulating dynamic natural environments. Algal Res Part B 6:242–249

    Google Scholar 

  108. MacIntyre HL, Cullen JJ (2005) Using cultures to investigate the physiological ecology of microalgae. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, New York, pp 287–326

    Google Scholar 

  109. Meireles LA, Azevedo JL, Cunha JP, Malcata FX (2002) On-line determination of biomass in a microalga bioreactor using a novel computerized flow injection analysis system. Biotechnol Prog 18:1387–1391

    Article  CAS  Google Scholar 

  110. Meireles LA, Guedes AC, Barbosa CR, Azevedo JL, Cunha JP, Malcata FX (2008) On-line control of light intensity in a microalgal bioreactor using a novel automatic system. Enzyme Microb Technol 42:554–559

    Article  CAS  Google Scholar 

  111. Olaizola M (2003) Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol Bioproc Eng 8:360–367

    Article  CAS  Google Scholar 

  112. Murphy TE, Macon K, Berberoglu H (2013) Multispectral image analysis for algal biomass quantification. Biotechnol Prog 29:808–816

    Article  CAS  Google Scholar 

  113. Brown LM, Gargantini I, Brown DJ, Atkinson HJ, Govindarajan J, Vanlerberghe GC (1989) Computer-based image analysis for the automated counting and morphological description of microalgae in culture. J Appl Phycol 1:211–225

    Article  Google Scholar 

  114. Gray AJ, Young D, Martin NJ, Glasbey CA (2002) Cell identification and sizing using digital image analysis for estimation of cell biomass in high rate algal ponds. J Appl Phycol 14:193–204

    Article  Google Scholar 

  115. Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16

    Article  CAS  Google Scholar 

  116. Mairet F, Bernard O, Masci P, Lacour T, Sciandra A (2011) Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation. Bioresour Technol 102:142–149

    Article  CAS  Google Scholar 

  117. Fluid Imaging Technologies Inc. (2013) FlowCAM® particle imaging within processing line. http://www.algaeindustrymagazine.com/flowcam-particle-imaging-within-processing-line/, http://www.fluidimaging.com/products-on-line-systems.htm (19.05.2015)

  118. Rehbock C, Riechers D, Hopfner T, Bluma A, Lindner P, Hitzmann B, Beutel S, Scheper T (2010) Development of a flow-through microscopic multitesting system for parallel monitoring of cell samples in biotechnological cultivation processes. J Biotechnol 150:87–93

    Article  CAS  Google Scholar 

  119. Prediger A, Bluma A, Hopfner T, Lindner P, Beutel S, Scheper T, Muller JJ, Hilterhaus L, Liese A (2011) In situ microscopy for online monitoring of enzyme carriers and two-phase processes. Chem Eng Technol 34:837–840

    Article  CAS  Google Scholar 

  120. Bluma A, Hopfner T, Lindner P, Rehbock C, Beutel S, Riechers D, Hitzmann B, Scheper T (2010) In-situ imaging sensors for bioprocess monitoring: state of the art. Anal Bioanal Chem 398:2429–2438

    Article  CAS  Google Scholar 

  121. Hopfner T, Bluma A, Rudolph G, Lindner P, Scheper T (2010) A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng 33:247–256

    Article  CAS  Google Scholar 

  122. Akin M, Prediger A, Yuksel M, Hopfner T, Demirkol DO, Beutel S, Timur S, Scheper T (2011) A new set up for multi-analyte sensing: at-line bio-process monitoring. Biosens Bioelectron 26:4532–4537

    Article  CAS  Google Scholar 

  123. Opitz B, Prediger A, Luder C, Eckstein M, Hilterhaus L, Lindner P, Beutel S, Scheper T, Liese A (2013) In situ microscopy for in-line monitoring of the enzymatic hydrolysis of cellulose. Anal Chem 85:8121–8126

    Article  CAS  Google Scholar 

  124. Lüder C, Lindner P, Bulnes-Abundis D, Lu Shaobin M, Lücking T, Solle D, Scheper T (2014) In situ microscopy and MIR-spectroscopy as non-invasive optical sensors for cell cultivation process monitoring. Pharm Bioprocess 2:157–166

    Article  Google Scholar 

  125. Havlik I, Reardon KF, Unal M, Lindner P, Prediger A, Babitzky A, Beutel S, Scheper T (2013) Monitoring of microalgal cultivations with on-line, flow-through microscopy. Algal Res 2:253–257

    Article  Google Scholar 

  126. Brown L (2014) Rapid, automated characterization of algae using dynamic imaging particle analysis. Industrial Biotechnology 10:164–168

    Article  Google Scholar 

  127. Park BS, Baek SH, Ki JS, Cattolico RA, Han MS (2012) Assessment of EvaGreen-based quantitative real-time PCR assay for enumeration of the microalgae Heterosigma and Chattonella (Raphidophyceae). J Appl Phycol 24:1555–1567

    Article  CAS  Google Scholar 

  128. Fulbright SP, Dean MK, Wardle G, Lammers PJ, Chisholm S (2014) Molecular diagnostics for monitoring contaminants in algal cultivation. Algal Res 4:41–51

    Article  Google Scholar 

  129. McBride RC, Lopez S, Meenach C, Burnett M, Lee PA, Nohilly F, Behnke C (2014) Contamination management in low cost open algae ponds for biofuels production. Ind Biotechnol 10:221–227

    Article  Google Scholar 

  130. White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol 102:1675–1682

    Article  CAS  Google Scholar 

  131. Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC, Govindjee (eds), Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 65–82

    Google Scholar 

  132. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  133. Schreiber U (2004) Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds), Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 279–319

    Google Scholar 

  134. Masojidek J, Kopecky J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317

    Article  CAS  Google Scholar 

  135. Hulatt CJ, Thomas DN (2011) Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour Technol 102:5775–5787

    Article  CAS  Google Scholar 

  136. Murphy TE, Macon K, Berberoglu H (2014) Rapid algal culture diagnostics for open ponds using multispectral image analysis. Biotechnol Prog 30:233–240

    Article  CAS  Google Scholar 

  137. Gunther A, Jakob T, Goss R, Konig S, Spindler D, Rabiger N, John S, Heithoff S, Fresewinkel M, Posten C, Wilhelm C (2012) Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresour Technol 121:454–457

    Article  CAS  Google Scholar 

  138. Fresewinkel M, Rosello R, Wilhelm C, Kruse O, Hankamer B, Posten C (2014) Integration in microalgal bioprocess development: design of efficient, sustainable, and economic processes. Eng Life Sci 14:560–573

    Article  CAS  Google Scholar 

  139. Jacobi A, Bucharsky EC, Schell KG, Habisreuther P, Oberacker R, Hoffmann MJ, Zarzalis N, Posten C (2012) The application of transparent glass sponge for improvement of light distribution in photobioreactors. J Bioprocess Biotechniq 2:113. doi:10.4172/2155-9821.1000113

    CAS  Google Scholar 

  140. Solovchenko AE, Khozin-Goldberg I, Cohen Z, Merzlyak MN (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21:361–366

    Article  CAS  Google Scholar 

  141. Solovchenko A, Khozin-Goldberg I, Recht L, Boussiba S (2011) Stress-Induced Changes in optical properties, pigment and fatty acid content of Nannochloropsis sp. implications for Non-destructive assay of total fatty acids. Mar Biotechnol 13:527–535

    Article  CAS  Google Scholar 

  142. Lichtenthaler HK, Wenzel O, Buschmann C, Gitelson A (1998) Plant stress detection by reflectance and fluorescence. In: Csermely P (ed) Stress of life: from molecules to man. New York Acad Sciences, New York, pp 271–285

    Google Scholar 

  143. Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green, and red fluorescence emission of plants: an overview. Photosynthetica 38:483–491

    Article  CAS  Google Scholar 

  144. Buschmann C (2007) Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res 92:261–271

    Article  CAS  Google Scholar 

  145. Lenk S, Chaerle L, Pfundel EE, Langsdorf G, Hagenbeek D, Lichtenthaler HK, Van der Straeten D, Buschmann C (2007) Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J Exp Bot 58:807–814

    Article  CAS  Google Scholar 

  146. Srinivas SP, Mutharasan R (1987) Inner filter effects and their interferences in the interpretation of culture fluorescence. Biotechnol Bioeng 30:769–774

    Article  CAS  Google Scholar 

  147. Kouril R, Ilik P, Naus J, Schoefs B (1999) On the limits of applicability of spectrophotometric and spectrofluorimetric methods for the determination of chlorophyll a/b ratio. Photosynth Res 62:107–116

    Article  CAS  Google Scholar 

  148. Forehead HI, O’Kelly CJ (2013) Small doses, big troubles: modeling growth dynamics of organisms affecting microalgal production cultures in closed photobioreactors. Bioresour Technol 129:329–334

    Article  CAS  Google Scholar 

  149. Sue T, Obolonkin V, Griffiths H, Villas-Boas SG (2011) An exometabolomics approach to monitoring microbial contamination in microalgal fermentation processes by using metabolic footprint analysis. Appl Environ Microbiol 77:7605–7610

    Article  CAS  Google Scholar 

  150. Görs M, Schumann R, Hepperle D, Karsten U (2010) Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. J Appl Phycol 22:265–276

    Article  CAS  Google Scholar 

  151. Lakaniemi AM, Intihar VM, Tuovinen OH, Puhakka JA (2012) Growth of Chlorella vulgaris and associated bacteria in photobioreactors. Microb Biotechnol 5:69–78

    Article  CAS  Google Scholar 

  152. Abomohra AE, El-Sheekh M, Hanelt D (2014) Extracellular secretion of free fatty acids by the chrysophyte Ochromonas danica under photoautotrophic and mixotrophic growth. World J Microbiol Biotechnol 30:3111–3119

    Article  CAS  Google Scholar 

  153. Tamburic B, Zemichael FW, Crudge P, Maitland GC, Hellgardt K (2011) Design of a novel flat-plate photobioreactor system for green algal hydrogen production. Int J Hydrogen Energ 36:6578–6591

    Article  CAS  Google Scholar 

  154. Oncel S, Kose A (2014) Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol 151:265–270

    Article  CAS  Google Scholar 

  155. Gao ZX, Zhao H, Li ZM, Tan XM, Lu XF (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865

    Article  CAS  Google Scholar 

  156. Balogh K, Jesus JM, Gouveia C, Domingues JO, Markovics A, Baptista JM, Kovacs B, Pereira CM, Borges MT, Jorge PAS (2013) Characterization of a novel dissolved CO2 sensor for utilization in environmental monitoring and aquaculture industry. In: Proceedings of SPIE 8785, 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, 8785FC. doi:10.1117/12.2027518

  157. Szita N, Boccazzi P, Zhang ZY, Boyle P, Sinskey AJ, Jensen KF (2005) Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 5:819–826

    Article  CAS  Google Scholar 

  158. Han A, Hou HJ, Li L, Kim HS, de Figueiredo P (2013) Microfabricated devices in microbial bioenergy sciences. Trends Biotechnol 31:225–232

    Article  CAS  Google Scholar 

  159. Vanrolleghem PA, Lee DS (2003) On-line monitoring equipment for wastewater treatment processes: state of the art. Water Sci Technol 47:1–34

    CAS  Google Scholar 

  160. Lynggaard-Jensen A, Eisum NH, Rasmussen I, Jacobsen HS, Stenstrom T (1996) Description and test of a new generation of nutrient sensors. Water Sci Technol 33:25–35

    Article  CAS  Google Scholar 

  161. Ingildsen P, Jeppsson U, Olsson G (2002) Dissolved oxygen controller based on on-line measurements of ammonium combining feed-forward and feedback. Water Sci Technol 45:453–460

    CAS  Google Scholar 

  162. Radomska A, Singhal S, Ye H, Lim M, Mantalaris A, Yue XC, Drakakis EM, Toumazou C, Cass AEG (2008) Biocompatible ion selective electrode for monitoring metabolic activity during the growth and cultivation of human cells. Biosens Bioelectron 24:435–441

    Article  CAS  Google Scholar 

  163. Gutierrez M, Alegret S, Caceres R, Casadesus J, Marfa O, Del Valle M (2008) Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue. J Agric Food Chem 56:1810–1817

    Article  CAS  Google Scholar 

  164. Mueller AV, Hemond HF (2013) Extended artificial neural networks: incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels. Talanta 117:112–118

    Article  CAS  Google Scholar 

  165. Masojidek J, Vonshak A, Torzillo G (2011) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 277–292

    Google Scholar 

  166. Davey PT, Hiscox WC, Lucker BF, O’Fallon JV, Chen S, Helms GL (2012) Rapid triacylglyceride detection and quantification in live micro-algal cultures via liquid state 1H NMR. Algal Res 1:166–175

    Article  Google Scholar 

  167. Sanchez-Silva L, Lopez-Gonzalez D, Garcia-Minguillan AM, Valverde JL (2013) Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol 130:321–331

    Article  CAS  Google Scholar 

  168. Chen W-H, Wu Z-Y, Chang J-S (2014) Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N. Bioresour Technol 155:245–251

    Article  CAS  Google Scholar 

  169. Marcilla A, Gomez-Siurana A, Gomis C, Chapuli E, Catala MC, Valdes FJ (2009) Characterization of microalgal species through TGA/FTIR analysis: application to Nannochloropsis sp. Thermochim Acta 484:41–47

    Article  CAS  Google Scholar 

  170. Biller P, Ross AB (2014) Pyrolysis GC–MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Res Part A 6:91–97

    Google Scholar 

  171. Hantelmann K, Kollecker A, Hull D, Hitzmann B, Scheper T (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. J Biotechnol 121:410–417

    Article  CAS  Google Scholar 

  172. Roychoudhury P, O’Kennedy R, McNeil B, Harvey LM (2007) Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses. Anal Chim Acta 590:110–117

    Article  CAS  Google Scholar 

  173. Porizka P, Prochazkova P, Prochazka D, Sladkova L, Novotny J, Petrilak M, Brada M, Samek O, Pilat Z, Zemanek P, Adam V, Kizek R, Novotny K, Kaiser J (2014) Algal biomass analysis by laser-based analytical techniques-a review. Sensors 14:17725–17752

    Article  CAS  Google Scholar 

  174. Bono MS Jr, Ahner BA, Kirby BJ (2013) Detection of algal lipid accumulation due to nitrogen limitation via dielectric spectroscopy of Chlamydomonas reinhardtii suspensions in a coaxial transmission line sample cell. Bioresour Technol 143:623–631

    Article  CAS  Google Scholar 

  175. Tartakovsky B, Sheintuch M, Hilmer JM, Scheper T (1996) Application of scanning fluorometry for monitoring of a fermentation process. Biotechnol Prog 12:126–131

    Article  CAS  Google Scholar 

  176. Podrazky O, Kuncova G, Krasowska A, Sigler K (2003) Monitoring the growth and stress responses of yeast cells by two-dimensional fluorescence spectroscopy: first results. Folia Microbiol 48:189–192

    Article  CAS  Google Scholar 

  177. Landgrebe D, Haake C, Hopfner T, Beutel S, Hitzmann B, Scheper T, Rhiel M, Reardon KF (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol 88:11–22

    Article  CAS  Google Scholar 

  178. Roychoudhury P, Harvey LM, McNeil B (2006) The potential of mid infrared spectroscopy (MIRS) for real time bioprocess monitoring. Anal Chim Acta 571:159–166

    Article  CAS  Google Scholar 

  179. Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131:875–885

    Article  CAS  Google Scholar 

  180. Laurens LML, Wolfrum EJ (2013) High-Throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis. J Agric Food Chem 61:12307–12314

    Article  CAS  Google Scholar 

  181. Tan S-T, Balasubramanian RK, Das P, Obbard JP, Chew W (2013) Application of mid-infrared chemical imaging and multivariate chemometrics analyses to characterise a population of microalgae cells. Bioresour Technol 134:316–323

    Article  CAS  Google Scholar 

  182. Riley MR, Crider HM, Nite ME, Garcia RA, Woo J, Wegge RM (2001) Simultaneous measurement of 19 components in serum-containing animal cell culture media by Fourier transform near-infrared spectroscopy. Biotechnol Prog 17:376–378

    Article  CAS  Google Scholar 

  183. Laurens LML, Wolfrum EJ (2011) Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. Bioenerg Res 4:22–35

    Article  Google Scholar 

  184. Brown MR, Frampton DMF, Dunstan GA, Blackburn SI (2014) Assessing near-infrared reflectance spectroscopy for the rapid detection of lipid and biomass in microalgae cultures. J Appl Phycol 26:191–198

    Article  CAS  Google Scholar 

  185. Challagulla V, Walsh KB, Subedi P (2014) Biomass and total lipid content assessment of microalgal cultures using near and short wave infrared spectroscopy. Bioenerg Res 7:306–318

    Article  CAS  Google Scholar 

  186. Sigee DC, Dean A, Levado E, Tobin MJ (2002) Fourier-transform infrared spectroscopy of Pediastrum duplex: characterization of a micro-population isolated from a eutrophic lake. Eur J Phycol 37:19–26

    Article  Google Scholar 

  187. Stehfest K (2006) Die FT-IR-Spektroskopie in der Pflanzenphysiologie—Anwendungsmöglichkeiten für die Zellinhaltsstoffanalytik [Ph.D. Thesis], Universität Leipzig, Leipzig

    Google Scholar 

  188. Jakob T, Wagner H, Stehfest K, Wilhelm C (2007) A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation. J Exp Bot 58:2101–2112

    Article  CAS  Google Scholar 

  189. Pistorius AMA, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129

    Article  CAS  Google Scholar 

  190. Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    Article  CAS  Google Scholar 

  191. Palmucci M, Ratti S, Giordano M (2011) Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: a fourier transform infrared spectroscopy approach. J Phycol 47:313–323

    Article  Google Scholar 

  192. Holm-Nielsen JB, Andree H, Lindorfer H, Esbensen KH (2007) Transflexive embedded near infrared monitoring for key process intermediates in anaerobic digestion/biogas production. J Near Infrared Spectrosc 15:123–135

    Article  CAS  Google Scholar 

  193. Stockl A (2013) Entwicklung und erprobung eines online-messsystems für biogasanlagen auf basis der Nah-Infrarot-Reflexionsspektroskopie (NIRS) [Ph.D. Thesis], Universität Hohenheim, Hohenheim

    Google Scholar 

  194. Holm-Nielsen JB, Lomborg CJ, Oleskowicz-Popiel P, Esbensen KH (2008) On-line near infrared monitoring of glycerol-boosted anaerobic digestion processes: evaluation of process analytical technologies. Biotechnol Bioeng 99:302–313

    Article  CAS  Google Scholar 

  195. Mayers JJ, Flynn KJ, Shields RJ (2013) Rapid determination of bulk microalgal biochemical composition by fourier-transform infrared spectroscopy. Bioresour Technol 148:215–220

    Article  CAS  Google Scholar 

  196. Coat R, Montalescot V, León E, Kucma D, Perrier C, Jubeau S, Thouand G, Legrand J, Pruvost J, Gonçalves O (2014) Unravelling the matrix effect of fresh sampled cells for in vivo unbiased FTIR determination of the absolute concentration of total lipid content of microalgae. Bioprocess Biosyst Eng 1–13

    Google Scholar 

  197. Schenk J, Marison IW, von Stockar U (2007) A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy. J Biotechnol 128:344–353

    Article  CAS  Google Scholar 

  198. Silva TLd, Roseiro JC, Reis A (2012) Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes. Trends Biotechnol 30:225–232

    Article  CAS  Google Scholar 

  199. Davis RW, Volponi JV, Jones HDT, Carvalho BJ, Wu H, Singh S (2012) Multiplex fluorometric assessment of nutrient limitation as a strategy for enhanced lipid enrichment and harvesting of Neochloris oleoabundans. Biotechnol Bioeng 109:2503–2512

    Article  CAS  Google Scholar 

  200. da Silva TL, Santos CA, Reis A (2009) Multi-parameter flow cytometry as a tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel. Biotechnol Bioproc Eng 14:330–337

    Article  CAS  Google Scholar 

  201. Gouveia L, Marques AE, da Silva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    Article  CAS  Google Scholar 

  202. da Silva TL, Reis A, Medeiros R, Oliveira AC, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568–578

    Article  CAS  Google Scholar 

  203. Brennan L, Fernandez AB, Mostaert AS, Owende P (2012) Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J Microbiol Meth 90:137–143

    Article  CAS  Google Scholar 

  204. Guzman HM, de la Jara Valido A, Duarte LC, Presmanes KF (2011) Analysis of interspecific variation in relative fatty acid composition: use of flow cytometry to estimate unsaturation index and relative polyunsaturated fatty acid content in microalgae. J Appl Phycol 23:7–15

    Article  CAS  Google Scholar 

  205. Mendoza Guzman H, de la Jara Valido A, Carmona Duarte L, Freijanes Presmanes K (2010) Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquacult Int 18:189–199

    Article  CAS  Google Scholar 

  206. Cooksey KE, Guckert JB, Williams SA, Callis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using nile red. J Microbiol Meth 6:333–345

    Article  CAS  Google Scholar 

  207. Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68:639–642

    Article  CAS  Google Scholar 

  208. Chen W, Zhang CW, Song LR, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77:41–47

    Article  CAS  Google Scholar 

  209. Doan T-TY, Obbard JP (2011) Improved nile red staining of Nannochloropsis sp. J Appl Phycol 23:895–901

    Article  CAS  Google Scholar 

  210. Broger T, Odermatt RP, Huber P, Sonnleitner B (2011) Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol 154:240–247

    Article  CAS  Google Scholar 

  211. Sitton G, Srienc F (2008) Mammalian cell culture scale-up and fed-batch control using automated flow cytometry. J Biotechnol 135:174–180

    Article  CAS  Google Scholar 

  212. Pomati F, Jokela J, Simona M, Veronesi M, Ibelings BW (2011) An automated platform for phytoplankton ecology and aquatic ecosystem monitoring. Environ Sci Technol 45:9658–9665

    Article  CAS  Google Scholar 

  213. Erickson RA, Jimenez R (2013) Microfluidic cytometer for high-throughput measurement of photosynthetic characteristics and lipid accumulation in individual algal cells. Lab Chip 13:2893–2901

    Article  CAS  Google Scholar 

  214. Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM (2010) Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol Bioeng 105:889–898

    CAS  Google Scholar 

  215. Fu D, Yu Y, Folick A, Currie E, Farese RV, Tsai TH, Xie XS, Wang MC (2014) In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated raman scattering microscopy. J Am Chem Soc 136:8820–8828

    Article  CAS  Google Scholar 

  216. Parab NDT, Tomar V (2012) Raman spectroscopy of algae: a review. J Nanomedic Nanotechnol 3:131–137

    CAS  Google Scholar 

  217. Wei X, Jie DF, Cuello JJ, Johnson DJ, Qiu ZJ, He Y (2014) Microalgal detection by raman microspectroscopy. TrAC-Trend Anal Chem 53:33–40

    Article  CAS  Google Scholar 

  218. Collins AM, Jones HDT, Han DX, Hu Q, Beechem TE, Timlin JA (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6:e24302

    Article  CAS  Google Scholar 

  219. Pilat Z, Bernatova S, Jezek J, Sery M, Samek O, Zemanek P, Nedbal L, Trtilek M (2012) Raman microspectroscopy of algal lipid bodies: beta-carotene quantification. J Appl Phycol 24:541–546

    Article  CAS  Google Scholar 

  220. Dementjev A, Kostkeviciene J (2013) Applying the method of Coherent Anti-stokes Raman microscopy for imaging of carotenoids in microalgae and cyanobacteria. J Raman Spectrosc 44:973–979

    Article  CAS  Google Scholar 

  221. Pilat Z, Bernatova S, Jezek J, Sery M, Samek O, Zemanek P, Nedbal L, Trtilek M (2011) Raman microspectroscopy of algal lipid bodies: beta-carotene as a volume sensor. In: Tomanek P, Senderakova D, Pata P (eds) Photonics, devices, and systems V, Proceedings of SPIE 8306. doi:10.1117/12.912264

  222. Samek O, Jonas A, Pilat Z, Zemanek P, Nedbal L, Triska J, Kotas P, Trtilek M (2010) Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors 10:8635–8651

    Article  CAS  Google Scholar 

  223. Wu HW, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci USA 108:3809–3814

    Article  CAS  Google Scholar 

  224. Kaczor A, Baranska M (2011) Structural changes of carotenoid astaxanthin in a single algal cell monitored in situ by Raman spectroscopy. Anal Chem 83:7763–7770

    Article  CAS  Google Scholar 

  225. Davis RW, Wu HW, Singh S (2014) Multispectral sorter for rapid, nondestructive optical bioprospecting for algae biofuels. In: Farkas DL, Nicolau DV, Leif RC (eds) Imaging, manipulation, and analysis of biomolecules, cells, and tissues XII, Proceedings SPIE 8947, 89471E. doi:10.1117/12.2040538

  226. Lee TH, Chang JS, Wang HY (2013) Rapid and in vivo quantification of cellular lipids in chlorella vulgaris using near-infrared Raman spectrometry. Anal Chem 85:2155–2160

    Article  CAS  Google Scholar 

  227. Oh SK, Yoo SJ, Jeong DH, Lee JM (2013) Real-time estimation of glucose concentration in algae cultivation system using Raman spectroscopy. Bioresour Technol 142:131–137

    Article  CAS  Google Scholar 

  228. Gao CF, Xiong W, Zhang YL, Yuan WQ, Wu QY (2008) Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance. J Microbiol Meth 75:437–440

    Article  CAS  Google Scholar 

  229. Beal CM, Webber ME, Ruoff RS, Hebner RE (2010) Lipid analysis of Neochloris oleoabundans by liquid state NMR. Biotechnol Bioeng 106:573–583

    Article  CAS  Google Scholar 

  230. Schor AR, Buie CR (2013) Non-invasive sorting of lipid producing microalgae with dielectrophoresis using microelectrodes. In: Proceedings of the ASME 2012 international mechanical engineering congress and exposition IMECE2012, vol 9, Pts A and B, Houston, Texas, USA, pp 701–707

    Google Scholar 

  231. Deng YL, Chang JS, Juang YJ (2013) Separation of microalgae with different lipid contents by dielectrophoresis. Bioresour Technol 135:137–141

    Article  CAS  Google Scholar 

  232. Gallo-Villanueva RC, Jesus-Perez NM, Martinez-Lopez JI, Pacheco A, Lapizco-Encinas BH (2011) Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluid Nanofluid 10:1305–1315

    Article  CAS  Google Scholar 

  233. Michael KA, Hiibel SR, Geiger EJ (2014) Dependence of the dielectrophoretic upper crossover frequency on the lipid content of microalgal cells. Algal Res 6:17–21

    Article  Google Scholar 

  234. Wu YF, Huang CJ, Wang L, Miao XL, Xing WL, Cheng J (2005) Electrokinetic system to determine differences of electrorotation and traveling-wave electrophoresis between autotrophic and heterotrophic algal cells. Colloids Surf A Physicochem Eng Aspects 262:57–64

    Article  CAS  Google Scholar 

  235. Sun T, Gawad S, Bernabini C, Green NG, Morgan H (2007) Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations. Meas Sci Technol 18:2859–2868

    Article  CAS  Google Scholar 

  236. Gitelson AA, Grits YA, Etzion D, Ning Z, Richmond A (2000) Optical properties of Nannochloropsis sp. and their application to remote estimation of cell mass. Biotechnol Bioeng 69:516–525

    Article  CAS  Google Scholar 

  237. Flynn KJ, Davidson K, Cunningham A (1993) Relations between carbon and nitrogen during growth of Nannochloropsis oculata (Droop) Hibberd under continuous illumination. New Phytol 125:717–722

    Article  Google Scholar 

  238. Lubian LM, Montero O, Moreno-Garrido I, Huertas IE, Sobrino C, Gonzalez-del Valle M, Pares G (2000) Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol 12:249–255

    Article  Google Scholar 

  239. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  Google Scholar 

  240. Reichardt TA, Collins AM, Garcia OF, Ruffing AM, Jones HDT, Timlin JA (2012) Spectroradiometric monitoring of Nannochloropsis salina growth. Algal Res 1:22–31

    Article  CAS  Google Scholar 

  241. Ohnuki S, Nogami S, Ota S, Watanabe K, Kawano S, Ohya Y (2013) Image-Based monitoring system for green algal Haematococcus pluvialis (Chlorophyceae) cells during culture. Plant Cell Physiol 54:1917–1929

    Article  CAS  Google Scholar 

  242. Cordoba-Matson MV, Gutierrez J, Porta-Gandara MA (2010) Evaluation of Isochrysis galbana (clone T-ISO) cell numbers by digital image analysis of color intensity. J Appl Phycol 22:427–434

    Article  Google Scholar 

  243. Uyar B (2013) A novel non-invasive digital imaging method for continuous biomass monitoring and cell distribution mapping in photobioreactors. J Chem Technol Biotechnol 88:1144–1149

    Article  CAS  Google Scholar 

  244. Jung SK, Lee SB (2003) Image analysis of light distribution in a photobioreactor. Biotechnol Bioeng 84:394–397

    Article  CAS  Google Scholar 

  245. Jung SK, Lee SB (2006) In situ monitoring of cell concentration in a photobioreactor using image analysis: comparison of uniform light distribution model and artificial neural networks. Biotechnol Prog 22:1443–1450

    Article  CAS  Google Scholar 

  246. Song YX, Li MQ, Yang JD, Wang JS, Pan XX, Sun YQ, Li DQ (2014) Capacitive detection of living microalgae in a microfluidic chip. Sensor Actuat B-Chem 194:164–172

    Article  CAS  Google Scholar 

  247. Prediger A, Lindner P, Bluma A, Reardon KF, Scheper T (2013) In situ microscopy. In: Morgan PS, Rose FR, Matcher SJ (eds) Optical techniques in regenerative medicine. CRC Press, Taylor & Francis, Boca Raton, pp 114–141

    Google Scholar 

  248. Komives C, Parker RS (2003) Bioreactor state estimation and control. Curr Opin Biotech 14:468–474

    Article  CAS  Google Scholar 

  249. Odman P, Johansen CL, Olsson L, Gernaey KV, Lantz AE (2009) On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sensors. J Biotechnol 144:102–112

    Article  CAS  Google Scholar 

  250. Simutis R, Havlik I, Lubbert A (1993) Fuzzy-aided neural network for real-time state estimation and process prediction in the alcohol formation step of production-scale beer brewing. J Biotechnol 27:203–215

    Article  CAS  Google Scholar 

  251. Beluhan D, Beluhan S (2000) Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor. Biotechnol Lett 22:631–635

    Article  CAS  Google Scholar 

  252. Zhang DM, Yan F, Sun ZL, Zhang QH, Xue SZ, Cong W (2014) On-line modeling intracellular carbon and energy metabolism of Nannochloropsis sp. in nitrogen-repletion and nitrogen-limitation cultures. Bioresour Technol 164:86–92

    Article  CAS  Google Scholar 

  253. Merrett MJ, Nimer NA, Dong LF (1996) The utilization of bicarbonate ions by the marine microalga Nannochloropsis oculata (Droop) Hibberd. Plant Cell Environ 19:478–484

    Article  CAS  Google Scholar 

  254. Su WW, Li J, Xu NS (2003) State and parameter estimation of microalgal photobioreactor cultures based on local irradiance measurement. J Biotechnol 105:165–178

    Article  CAS  Google Scholar 

  255. Goffaux G, Wouwer AV, Bernard O (2009) Continuous—discrete interval observers for monitoring microalgae cultures. Biotechnol Prog 25:667–675

    Article  CAS  Google Scholar 

  256. Obeid J, Flaus JM, Adrot O, Magnin JP, Willison JC (2010) State estimation of a batch hydrogen production process using the photosynthetic bacteria Rhodobacter capsulatus. Int J Hydrogen Energ 35:10719–10724

    Article  CAS  Google Scholar 

  257. Nuñez S, Garelli F, De Battista H (2012) Sliding mode observer for biomass estimation in a biohydrogen production process. Int J Hydrogen Energ 37:10089–10094

    Article  CAS  Google Scholar 

  258. Rocha-Cozatl E, Wouwer AV (2011) State and input estimation in phytoplanktonic cultures using quasi-unknown input observers. Chem Eng J 175:39–48

    Article  CAS  Google Scholar 

  259. Martin de la Cruz MC, Gonzalez Vilas L, Yarovenko N, Spyrakos E, Torres Palenzuela JM (2013) Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures. In: Hadjimitsis DG, Themistocleous K, Michaelides S, Papadavid G (eds) First international conference on remote sensing and geoinformation of the environment (Rscy2013), Proc. SPIE 8795. doi:10.1117/12.2028345

  260. Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843

    Article  CAS  Google Scholar 

  261. Solovchenko A, Merzlyak MN, Khozin-Goldberg I, Cohen Z, Boussiba S (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in delta 5 desaturase by nitrogen starvation and high light. J Phycol 46:763–772

    Article  CAS  Google Scholar 

  262. Solovchenko A, Solovchenko O, Khozin-Goldberg I, Didi-Cohen S, Pal D, Cohen Z, Boussiba S (2013) Probing the effects of high-light stress on pigment and lipid metabolism in nitrogen-starving microalgae by measuring chlorophyll fluorescence transients: studies with a delta 5 desaturase mutant of Parietochloris incisa (Chlorophyta, Trebouxiophyceae). Algal Res 2:175–182

    Article  Google Scholar 

  263. Mairet F, Moisan M, Bernard O (2014) Estimation of neutral lipid and carbohydrate quotas in microalgae using adaptive interval observers. Bioprocess Biosyst Eng 37:51–61

    Article  CAS  Google Scholar 

  264. Mairet F, Moisan M, Bernard O (2014) Interval observer with near optimal adaptation dynamics. Application to the estimation of lipid quota in microalgae. Int J Robust Nonlin 24:1142–1157

    Article  Google Scholar 

  265. Beutel S, Henkel S (2011) In situ sensor techniques in modern bioprocess monitoring. Appl Microbiol Biotechnol 91:1493–1505

    Article  CAS  Google Scholar 

  266. Meiser A, Schmid-Staiger U, Trosch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor. J Appl Phycol 16:215–225

    Article  CAS  Google Scholar 

  267. Wu Y-H, Yu Y, Li X, Hu H-Y, Su Z-F (2012) Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresour Technol 112:193–198

    Article  CAS  Google Scholar 

  268. Masojidek J, Koblizek M, Torzillo G (2007) Photosynthesis in Microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 20–39

    Google Scholar 

  269. Ritchie RJ (2013) The use of solar radiation by the photosynthetic bacterium, Rhodopseudomonas palustris: model simulation of conditions found in a shallow pond or a flatbed reactor. Photochem Photobiol 89:1143–1162

    Article  CAS  Google Scholar 

  270. Guzman HM, Valido AD, Presmanes KF, Duarte LC (2012) Quick estimation of intraspecific variation of fatty acid composition in Dunaliella salina using flow cytometry and Nile Red. J Appl Phycol 24:1237–1243

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Havlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Havlik, I., Scheper, T., Reardon, K.F. (2015). Monitoring of Microalgal Processes. In: Posten, C., Feng Chen, S. (eds) Microalgae Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 153. Springer, Cham. https://doi.org/10.1007/10_2015_328

Download citation

Publish with us

Policies and ethics