Skip to main content
Log in

Biological constraints in algal biotechnology

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In the past decade, considerable progress has been made in developing the appropriate biotechnology for microalgal mass cultivation aimed at establishing a new agro-industry. This review points out the main biological constraints affecting algal biotechnology outdoors and the requirements for making this biotechnology economically viable. One of them is the availability of a wide variety of algal species and improved strains that favorably respond to varying environmental conditions existing outdoors. It is thus just a matter of time and effort before a new methodology like genetic engineering can and will be applied in this field as well. The study of stress physiology and adaptation of microalgae has also an important application in further development of the biotechnology for mass culturing of microalgae. In outdoor cultures, cells are exposed to severe changes in light and temperature much faster than the time scale required for the cells to acclimate. A better understanding of those parameters and the ability to rapidly monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity. Induction of accumulation of high value products is associated with stress conditions. Understanding the physiological response may help in providing a better production system for the desired product and, at a later stage, give an insight of the potential for genetic modification of desired strains. The potential use of microalgae as part of a biological system for bioremediation/detoxification and wastewater treatment is also associated with growing the cells under stress conditions. Important developments in monitoring and feedback control of the culture behavior through application of on-line chlorophyll fluorescence technique are in progress. Understanding the process associated with those unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Escoubas, J.-M., M. Lomas, J. LaRoche, and P. G. Falkowski (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the PQ pool.Proc. Natl. Acad. Sci. USA 92: 10237–10241.

    Article  CAS  Google Scholar 

  2. Huner, N. P. A., G. Öquist, and F. Sarhan (1998) Energy balance and acclimation to light and cold.Trends Plant Sci. 3: 224–230.

    Article  Google Scholar 

  3. Burlew J. S. (1953) Current status of the large-scale culture of algae. pp. 3–23. In: J. S. Burlew (ed.).Algal Culture: From Laboratory to Pilot Plant. Carnegie Institution of Washington Publication 600, Washington DC, USA.

    Google Scholar 

  4. Prakash, J., F. Torzillo, B. Pushparaj, P. Carlozzi, and R. Materassi (1995) Transient analysis and performance studies of two tubular photobioreactors for outdoor culture ofSpirulina.Int. J. Energ. Res. 19: 479–491.

    Article  Google Scholar 

  5. Goldman, J. C. (1979) Outdoor algal mass cultures: II. Photosynthetic yield limitations.Water Res. 13: 119–136.

    Article  CAS  Google Scholar 

  6. Richmond, A. and A. Vonshak (1978)Spirulina culture in Israel.Arch. Hydrobiol. Beith. Erg. Limnol. 11: 274–279.

    Google Scholar 

  7. Hu, Q., H. Guterman, and A. Richmond (1996) Physiological characteristics ofSpirulina platensis (Cyanobacteria) cultured at ultrahigh cell densities.J. Phycol. 32: 1066–1073.

    Article  Google Scholar 

  8. Morita, M., Y. Watanabe, and H. Saiki (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae.Biotechnol. Bioeng. 69: 693–698.

    Article  CAS  Google Scholar 

  9. Lee, Y. K., S. Y. Ding, C. S. Low, Y. C. Chang, W. L. Forday, and P. C. Chew (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae.J. Appl. Phycol. 7: 47–51.

    Article  CAS  Google Scholar 

  10. Carlozzi, P. (2002) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing southnorth: A way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis).Biotechnol. Bioeng. 81: 305–315.

    Article  Google Scholar 

  11. Grima, E. M., F. G. Camacho, J. A. S. Peres, F. G. A. Fernandez, and J. M. F. Sevilla (1997) Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance.Enzyme Microb. Technol. 21: 375–381.

    Article  CAS  Google Scholar 

  12. Mori, K. (1985) Photoautotrophic bioreactor using visible solar rays condensed by Fresnel lenses and transmitted through optical fibers.Biotechnol. Bioeng. Symp. 15: 331–345.

    Google Scholar 

  13. Feuermann, D. and J. M. Gordon (1998) Solar fiber-optic mini-dishes: A new approach to the efficient collection of sunlight.Solar Energy 65: 159–170.

    Article  Google Scholar 

  14. Matsunaga, T., H. Takeyama, H. Sudo, N. Oyama, S. Ariura, H. Takano, H. Hirano, J. G. Burgess, K. Sode, and N. Nakamura (1998) Glutamate production from CO2 by marine cyanobacteriumSynechococcus sp. using a novel biosolar reactor employing light diffusing optical fibers.Appl. Biochem. Biotechnol. 28/29: 157–167.

    Article  Google Scholar 

  15. Hirata, S., M. Hayashitani, M. Taya, and S. Tone (1996) Carbon dioxide fixation in bath culture ofChlorella sp. using a photobioreactor with sunlight collection device.J. Ferment. Bioeng. 81: 470–472.

    Article  CAS  Google Scholar 

  16. Ogbonna, J. C., T. Soejima, and H. Tanaka (1999b) An integrated solar and artificial light system for internal illumination of photobioreactors.J. Biotechnol. 70: 289–297.

    Article  CAS  Google Scholar 

  17. Janssen, M., J. Tramper, L. R. Mur, and R. H. Wijffels (2002) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects.Biotechnol. Bioeng. 81: 193–210.

    Article  Google Scholar 

  18. Laws, E. A., K. L. Terry, J. Wickman, and M. S. Chalup (1983). A simple algal production system designed to utilize the flashing light effect.Biotechnol. Bioeng. 25: 2319–2335.

    Article  CAS  Google Scholar 

  19. Laws, E. A., T. Satoru, J. Hirata, and L. Pang (1987) Optimization of microalgae production in a shallow outdoor flume.Biotechnol. Bioeng. 32: 140–7.

    Article  Google Scholar 

  20. Ugwu, C. U., J. C. Ogbonna, and H. Tanaka (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers.Appl. Microbiol. Biotechnol. 58: 600–607.

    Article  CAS  Google Scholar 

  21. Carlozzi, P. and G. Torzillo (1996) Productivity ofSpirulina in a strongly curved outdoor tubular photobioreactor.Appl. Microbiol. Biotechnol. 45: 18–23.

    Article  CAS  Google Scholar 

  22. Muller-Feuga, A., R. Le Guèdes, J. Pruvost, P. Legentilhomme, and J. Legrand (2002) Swirling flow implementation in photobioreactor as a potential means of improving the microalgae culture yields.Abstracts of the 9th International Conference on Applied Algology. May 26–30. Almeria, Spain.

  23. Melis, A., J. Neidhardt, and J. R. Benemann (1999)Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells.J. Appl. Phycol. 10: 515–525.

    Article  Google Scholar 

  24. Neidhardt, J., J. R. Benemann, L. Zhang, and A. Melis (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: Relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity inDunaliella salina (green algae).Photosynth. Res. 56: 175–184.

    Article  CAS  Google Scholar 

  25. Nakajima, Y. and R. Ueda (1997) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments.J. Appl. Phycol. 9: 503–510.

    CAS  Google Scholar 

  26. Nakajima, Y. and R. Ueda (2000) The effect of reducing light-harvesting pigments on marine microalgal productivity.J. Appl. Phycol. 12: 285–290.

    Article  CAS  Google Scholar 

  27. Benemann, J. R. (1989) The future of microalgal biotechnology. pp. 318–337. In: R. D. Cresswell, T. A. V. Rees, and N. Shah (eds.),Algal and Cyanobacterial Technology. Longman Scientific and Technical Press, Edinburgh, UK.

    Google Scholar 

  28. Polle J. E. W., S.-D. Kanakagiri, and A. Melis (2003)tlal, a DNA insertional transformant of the green alga Chlamidomonas reinhardtii with truncated light-harvesting chlorophyll antenna size.Planta 217: 49–59.

    CAS  Google Scholar 

  29. Jin, E. S., E. W., E. S. Jin, J. E. W. Polle, and A. Melis (2001) Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green algaDunaliella salina.Biochim. Biophys. Acta 1506: 244–259.

    Article  CAS  Google Scholar 

  30. Masojidek, J., S. Papacek, M. Sergejevova, V. Jirka, J. Cerveny, J. Kunc, J. Korencko, O. Verbovikova, J. Kopecky, J. Stys, and G. Torzillo (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: Basic design and performance.J. Appl. Phycol. 15: 239–248.

    Article  CAS  Google Scholar 

  31. Vonshak, A. (1987) Biological limitations in developing the biotechnology of algal mass cultivation.Sc. de L’eau 6: 99–103.

    CAS  Google Scholar 

  32. Richmond, A., E. Lichtenberg, B. Stahl, and A. Vonshak (1990) Quantitative assessment of the major limitations on productivity ofSpirulina platensis in open raceways.J. Appl. Phycol. 2: 195–206.

    Article  Google Scholar 

  33. Bird, R. B., W. E. Stewart, and E. N. Lightfoot (1960)Transport Phenomena. p. 780. John Wiley & Sons, NY, USA.

    Google Scholar 

  34. Vonshak, A. and R. Guy (1992) Photoadaptation, phoinhibition and productivity in the blue-green algaSpirulina platensis, grown outdoors.Plant Cell Environ. 15: 613–616.

    Article  Google Scholar 

  35. Torzillo, G., P. Bernardini, and J. Masojidek (1998)On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures ofSpirulina platensis (Cyanobacteria).J. Phycol. 34: 504–510.

    Article  CAS  Google Scholar 

  36. Vonshak, A., G. Torzillo, and L. Tomaselli (1994) Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures ofSpirulina platensis.J. Appl. Phycol. 6: 31–34.

    Article  Google Scholar 

  37. Lu, C. M. and A. vonshak, (1999) A. Photoinhibition in outdoorSpirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients.J. Appl. Phycol. 11: 355–359.

    Article  Google Scholar 

  38. Camacho, G. F., A. C. Gómez, F. G. A. Fernández, J. F. Sevilla, and E. M. Grima (1999). Use of concentric-tube airlift ohotobioreactors for microalgal outdoor mass cultures.Enzyme Microb. Technol. 24: 164–172.

    Article  CAS  Google Scholar 

  39. Torzillo, G., P. Accolla, E. Pinzani, and J. Masojidek (1996)In-situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses inSpirulina cultures grown outdoors in photobioreactors.J. Appl. Phycol. 8: 283–291.

    Article  CAS  Google Scholar 

  40. Björkman, O. (1987) Low temperature chlorophyll fluorescence in leaves and its relationship to photon yield of photosynthesis in photoinhibition. pp. 123–144. In: D. J. Kyle, C. B. Osmond, and C. J. Arntzen (eds.).Photoinhibition. Elsevier Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  41. Genty, B., J. M. Briantais, and N. R. Baker (1989) The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence.Biochim. Biophys. Acta 909: 87–92.

    Google Scholar 

  42. Neale, J. (1987) Algal photoinhibition and photosynthesis in the aquatic environment. Pp. 39–65. In: D. J. Kyle, C. B Osmond, and C. J. Arntzen (eds.).Photoinhibition. Elsevier Science Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  43. Long, S. P., S. Humphiries, and G. P. Falkowski (1994) Photoinhibition of photosynthesis in nature.Annu. Rev. Plant Physiol. Plant Biol. 45: 161–168.

    Google Scholar 

  44. Behrenfeld, M. J., O. Prasil, Z. S. Kolber, M. Babin, and P. G. Falkowski, (1998) Compensatory changes in photosystem II electron turnover rates protect phtosynthesis from photoinhibition.Photosynth. Res. 58: 259–268.

    Article  CAS  Google Scholar 

  45. Vonshak, A., G. Torzillo, J. Masojidek, and S. Boussiba (2001) Sub-optimal morning temperature induces photoihibition in dense outdoor cultures of the algaMonodus subterraneus (Eustigmatophyta).Plant Cell Environ. 24: 1113–1118.

    Article  Google Scholar 

  46. Hu, Q., M. Faiman, and A. Richmond (1998) Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors.J. Ferment. Bioeng. 85: 230–236.

    Article  Google Scholar 

  47. Morita, M., Y. Watanabe, and H. Saiki (2001) Evaluation of photobioreactor heat balance for predicting changes in culture medium temperature due to light irradiation.Biotechnol. Bioeng. 74: 466–475.

    Article  CAS  Google Scholar 

  48. Krause, G. H. and G. Cornic (1987) CO2 and O2 interaction in photoinhibition. pp. 169–96. In: D. J. Kyle, C. B. Osmond, and C. J. Arntzen (eds.).Photoinhibition. Elsevier Science Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  49. Asada, K. (1994). Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. pp. 129–142. In: N. R. Baker and J. R. Bowyer (eds.).Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Bios Scientific Publishers Ltd., Oxford, UK.

    Google Scholar 

  50. Torzillo, G., J. Komenda, J. Kopecky, C. Faraloni, and J. Masojidek (2003) Photoinhibitoruy stress induced by high oxygen and low temperature in outdoor cultures ofArthrospira platensis grown in closed photobioreactors.Abstracts of Third European Phycological Congress. July 21–26. Belfast, Ireland.

  51. Hager, A. (1981)Pigments in Plants. pp. 57–80. Akademie Verlag, Berlin, Germany.

    Google Scholar 

  52. Grima, E. M., F. G. A. Fernández, and Y. Chisti (2001). Tubular photobioreactor design for algal cultures.J. Biotechnol. 92: 113–131.

    Article  Google Scholar 

  53. Vonshak, A., G. Torzillo, P. Accolla, and L. Tomaselli (1996) Light and oxygen stress inSpirulina platensis (Cyanobacteria) grown outdoors in tubular reactors.Physiol. Plant. 97: 175–179.

    Article  CAS  Google Scholar 

  54. Markez, F. J., K. Sasaki, N. Nishio, and S. Nagai (1995) Inhibitory effect of oxygen accumulation on the growth ofSpirulina platensis.Biotechnol. Lett. 17: 222–228.

    Google Scholar 

  55. Torzillo, G., L. Giovannetti, F. Bocci, and R. Materassi (1984) Effect of oxygen concentration on the protein content ofSpirulina biomass.Biotechnol. Bioeng. 26: 1134–1135.

    Article  CAS  Google Scholar 

  56. Richmond, A., S. Boussiba, A. Vonshak, and R. Kopel (1993) A new tubular reactor for mass production of microalgae outdoors.J. Appl. Phycol. 5: 327–332.

    Article  Google Scholar 

  57. Davison, I. R. (1991) Environmental effects on algal photosynthesis: temperature.J. Phycol. 27: 2–8.

    Article  Google Scholar 

  58. Torzillo, G. (1997) Bioreactors. pp. 101–116. In: A. Vonshak (ed.).Spirulina platensis (Arthrospira): Physiology. Cell-biology and Biotechnology. Taylor & Francis Ltd, London, UK.

    Google Scholar 

  59. Fornari, L. F, F. L. Lupoli, A. C Carella, and G. V. G. V. Gregorini (1999) A real-life, large scale and fully controlled photobioreactor for microalgae production.Abstracts of 8th International Conference on Applied Algology. Sept. 26- October 1. Montecatini Terme, Italy.

  60. Pushparaj, B., E. Pelosi, M. R. Tredici, E. Pinzani, and R. Materassi (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria.J Appl. Phycol. 9: 113–119.

    Article  Google Scholar 

  61. Gudin, C. and D. Chaumont (1991) Cell fragility: The key problem of microalgae mas sproduction in closed photobioreactors.Biores. Technol. 38: 145–151.

    Article  Google Scholar 

  62. Chisti, Y. (1999) Shear sensitivity. pp. 2379–2406. In: M. C., Flickinger and S. W. Drew (eds.).Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. Wiley, NY, USA.

    Google Scholar 

  63. Pirt, S. J., Y. K. Lee, M. R. Walach, M. W. Pirt, H. H. M Balyuzi, and M. J. Bazin (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: Design and performance.J. Chem. Biotechnol. 33B: 35–58.

    CAS  Google Scholar 

  64. Torzillo, G., P. Carlozzi, B. Pushparaj, E. Montaini, and R. Materassi (1993) A two-plane photobioreactor for outdoor culture ofSpirulina.Biotechnol. Bioeng. 42: 891–898.

    Article  CAS  Google Scholar 

  65. Silva, H. J., T. Cortinas, and R. J. Ertola (1987) Effect of hydrodynamic stress onDunaliella growth.J. Chem. Technol. Biotechnol. 40: 41–49.

    Google Scholar 

  66. Allias, B., C., M. C. G. Lopez, F. G. A. Fernandez, J. M. F. Sevilla, J. L. G. Sanchez, and E. M. Grima (2003) How power supply affects microalgal growth.Abstracts of 5th European Workshop. June 23–24. Potsdam, Germany.

  67. Grima, E. M., F. G. A. Fernández, F. G. Camacho, F. C. Rubio, and Y. Chisti (2000) Scale-up of tubular photobioreactors.J. Appl. Phycol. 12: 355–368.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Torzillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torzillo, G., Pushparaj, B., Masojidek, J. et al. Biological constraints in algal biotechnology. Biotechnol. Bioprocess Eng. 8, 338–348 (2003). https://doi.org/10.1007/BF02949277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02949277

Keywords

Navigation