Skip to main content
Log in

Improved Nile Red staining of Nannochloropsis sp.

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

High-throughput screening of microalgae for use as a potential feedstock for biodiesel requires a reliable method for the rapid detection of intracellular neutral lipid content. In this study, we report a modified and improved Nile Red (NR) fluorescence staining procedure for use as a rapid and sensitive screening tool to estimate levels of intracellular neutral lipid in the picopleustonic microalgae, Nannochloropsis sp. Addition of either glycerol or dimethyl sulfoxide (DMSO) into microalgae cultures greatly enhances lipid staining efficiency and increases the fluorescence intensity of stained cells. The optimized procedure requires glycerol and DMSO at the concentration of 0.1 and 0.165 g mL−1, respectively, for peak fluorescence in a live culture of Nannochloropsis sp. Incubation for 5 min for glycerol-NR staining and 10 min for DMSO-NR staining at room temperature, in darkness, is used for the NR concentration of 0.3 and 0.7 μg mL−1 for glycerol and DMSO, respectively. For the selection of lipid-rich cells of Nannochloropsis sp. using flow cytometric cell sorting, the glycerol-NR procedure is recommended as glycerol, unlike DMSO, does not inhibit subsequent growth of sorted cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen W, Zhang CW, Song LR, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77:41–47

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  PubMed  CAS  Google Scholar 

  • Cooksey KE, Guckert JB, Williams SA, Callis PR (1987) Fluorometric-determination of the neutral lipid-content of microalgal cells using Nile Red. J Microbiol Meth 6:333–345

    Article  CAS  Google Scholar 

  • de la Jara A, Mendoza H, Martel A, Molina C, Nordstron L, de la Rosa V et al (2003) Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J Appl Phycol 15:433–438

    Article  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68:639–642

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  PubMed  CAS  Google Scholar 

  • Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, Nile Red. J Lipid Res 26:781–789

    PubMed  CAS  Google Scholar 

  • Guillard RRL (2005) Purification methods for microalgae. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 117–132

    Chapter  Google Scholar 

  • Lee SJ, Yoon BD, Oh HM (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  PubMed  CAS  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod Biorefin 3:431–440

    Article  CAS  Google Scholar 

  • Poncet JM, Veron B (2003) Cryopreservation of the unicellular marine alga, Nannochloropsis oculata. Biotechnol Lett 25:2017–2022

    Article  PubMed  CAS  Google Scholar 

  • Priscu JC, Priscu LR, Palmisano AC, Sullivan CW (1990) Estimation of neutral lipid-level in Antartic sea ice microalgae by Nile Red fluorescence. Antarct Sci 2:149–155

    Article  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  PubMed  CAS  Google Scholar 

  • Sensen C, Heimann K, Melkonian M (1993) The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting. Eur J Phycol 28:93–97

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. NREL/TP-580-24190, National Renewable Energy Lab., Golden, CO. Department of Energy, Washington, USA

  • Simonetti O, Hoogstraate AJ, Bialik W, Kempenaar JA, Schrijvers A, Bodde HE et al (1995) Visualization of diffusion pathways across the stratum corneum of native and in-vitro reconstructed epidermis by confocal laser scanning microscopy. Arch Dermatol Res 287:465–473

    Article  PubMed  CAS  Google Scholar 

  • Solomon J, Hand R Jr, Mann R (1986) Ultrastructural and flow cytometric analyses of lipid accumulation in microalgae. SERI/STR-231-3089, Oak Ridge National Lab., Solar Energy Research Inst., Golden, CO, USA

  • Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green-alga Nannochloropsis sp. QII under different nitrogen regimes. J Phycol 23:289–296

    Article  CAS  Google Scholar 

  • Tzovenis I, Triantaphyllidis G, Naihong X, Chatzinikolaou E, Papadopoulou K, Xouri G et al (2004) Cryopreservation of marine microalgae and potential toxicity of cryoprotectants to the primary steps of the aquacultural food chain. Aquaculture 230:457–473

    Article  CAS  Google Scholar 

  • Veldhuis MJW, Cucci TL, Sieracki ME (1997) Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J Phycol 33:527–541

    Article  CAS  Google Scholar 

  • Zou N, Zhang CW, Cohen Z, Richmond A (2000) Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol 35:127–133

    Article  Google Scholar 

Download references

Acknowledgments

Funding of this research project was provided by Agency for Science, Technology and Research of Singapore (A* STAR). We also thank Toh Kok Tee (NUMI), Yeo Yin Sheng Wilson (TMSI), and Dr. Balasubramanian Sivaloganathan for technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi-Thai Yen Doan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doan, TT.Y., Obbard, J.P. Improved Nile Red staining of Nannochloropsis sp.. J Appl Phycol 23, 895–901 (2011). https://doi.org/10.1007/s10811-010-9608-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9608-5

Keywords

Navigation