Skip to main content
Log in

In situ sensor techniques in modern bioprocess monitoring

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

New reactor concepts as multi-parallel screening systems or disposable bioreactor systems for decentralized and reproducible production increase the need for new and easy applicable sensor technologies to access data for process control. These sophisticated reactor systems require sensors to work with the lowest sampling volumes or, even better, to measure directly in situ, but in situ sensors are directly incorporated into a reactor or fermenter within the sterility barrier and have therefore to stand the sterilization procedures. Consequently, these in situ sensor technologies should enable the measurement of multi-analytes simultaneously online and in real-time at a low price for the robust sensing element. Current research therefore focuses on the implementation of noninvasive spectroscopic and optical technologies, and tries to employ them through fiber optics attached to disposable sensing connectors. Spectroscopic methods reach from ultraviolet to infrared and further comprising fluorescence and Raman spectroscopy. Also, optic techniques like microscopy are adapted for the direct use in bioreactor systems (Ulber et al. in Anal Bioanal Chem 376:342–348, 2003) as well as various electrochemical methods (Joo and Brown in Chem Rev 108:638–651, 2008). This review shows the variety of modern in situ sensing principles in bioprocess monitoring with emphasis on spectroscopic and optical techniques and the progress in the adaption to latest reactor concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anders KD, Wehnert G, Thordsen O, Scheper T, Rehr B, Sahm H (1993) Biotechnological applications of fiber-optic sensing—multiple uses of a fiber-optic fluorometer. Sens Actuators B Chem 11:395–403

    Article  CAS  Google Scholar 

  • Anton F, Burzlaff A, Kasper C, Brückerhoff T, Scheper T (2007) Preliminary study towards the use of in-situ microscopy for the online analysis of microcarrier cultivations. Eng Life Sci 7:91–96

    Article  CAS  Google Scholar 

  • Arnold SA, Gaensakoo R, Harvey LM, McNeil B (2002) The use of at-line and in-situ near-infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process. Biotechnol Bioeng 80:405–413

    Article  CAS  PubMed  Google Scholar 

  • Becker T, Hitzmann B, Muffler K, Pörtner R, Reardon KF, Stahl F, Ulber R (2007) Future aspects of bioprocess monitoring. Adv Biochem Eng Biotechnol 150:249–293. doi:https://doi.org/10.1007/10_2006_036

    Google Scholar 

  • Bell SEJ, Bourguignon ESO, O’Grady A, Villaumie J, Dennis AC (2002) Extracting Raman spectra from highly fluorescent samples with “Scissors” (SSRS, shifted-substracted Raman spectroscopy). Spectrosc Eur 14:17–20

    CAS  Google Scholar 

  • Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 19:70–71

    Article  Google Scholar 

  • Beutel S, Klein K, Knobbe G, Königfeld P, Petersen K, Ulber R, Scheper T (2002) Controlled enzymatic removal of damaging casein layers on medieval wall-paintings. Biotechnol Bioeng 80:13–21

    Article  CAS  PubMed  Google Scholar 

  • Bittner C, Wehnert G, Scheper T (1998) In situ microscopy for on-line determination of biomass. Biotechnol Bioeng 60:24–35

    Article  CAS  PubMed  Google Scholar 

  • Bluma A, Höpfner T, Rudolph G, Lindner P, Beutel S, Hitzmann B, Scheper T (2009) Adaptation of in-situ microscopy for crystallization processes. J Cryst Growth 311:4193–4198

    Article  CAS  Google Scholar 

  • Bluma A, Höpfner T, Lindner P, Rehbock C, Beutel S, Riechers D, Hitzmann B, Scheper T (2010) In-situ imaging sensors for bioprocess monitoring: state of the art. Anal Bional Chem 398:2429–2438

    Article  CAS  Google Scholar 

  • Bluma A, Höpfner T, Prediger A, Glindkamp A, Beutel S, Scheper T (2011) Process analytical sensors and image-based techniques for single-use bioreactors. Eng Life Sci 11(4):1–4

    Google Scholar 

  • Bohnke C, Duroy H, Fourquet JL (2003) pH sensors with lithium lanthanum titanate sensitive material: applications in food industry. Sens Actuators B Chem 89:240–247

    Article  CAS  Google Scholar 

  • Boyd JE, Briskman A, Colvin VL, Mittleman DM (2001) Direct observation of terahertz surface modes in nanometer-sized liquid water pools. Phys Rev Lett 87:14701

    Article  CAS  Google Scholar 

  • Brecker L, Weber H, Griengl H, Ribbons DW (1999) In situ proton-NMR analyses of Escherichia coli HB101 fermentations in (H2O)-H-1 and in D2O. Microbiol 145:3389–3397

    Article  CAS  Google Scholar 

  • Cannizzaro C, Rhiel M, Marison I, von Stockar U (2003a) On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol Bioeng 83:668–680

    Article  CAS  PubMed  Google Scholar 

  • Cannizzaro C, Gügerli R, Marison I, von Stockar U (2003b) On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng 84:597–610

    Article  CAS  PubMed  Google Scholar 

  • Castro CD, Koretsky AP, Domach MM (1999) Performance trade-offs in in situ Chemostat NMR. Biotechnol Prog 15:185–195

    Article  CAS  PubMed  Google Scholar 

  • Cervera AE, Petersen N, Lantz AE, Larsen A, Gernaey KV (2009) Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation. Biotechnol Prog 25:1561–1581

    CAS  PubMed  Google Scholar 

  • Chen JY, Markelz AG (2003) Towards biosensing with terahertz spectroscopy: ligand binding effects. Biophys J 84:156A–156A

    Google Scholar 

  • Dremel BAA, Schmid RD (1992) Optical sensors for bioprocess control. Chem Ing Tech 64:510–517

    Article  CAS  Google Scholar 

  • El-Diasty F (2011) Coherent anti-Stokes Raman scattering: spectroscopy and microscopy. Vib Spectrosc 55(1):1–37

    Article  CAS  Google Scholar 

  • Endres C, Haake C, Landgrebe D, Beutel S, Stahl F, Hitzmann B, Scheper T, Friehs K (2009) Moderne Bioprozessanalytik – eine kurze Übersicht. BIOspektrum 15:662–664

    CAS  Google Scholar 

  • Fernández-Sánchez JF, Cannas R, Spichiger S, Steiger R, Spichiger-Keller UE (2006) Novel nanostructured materials to develop oxygen-sensitive films for optical sensors. Anal Chim Acta 556:271–282

    Article  CAS  Google Scholar 

  • Ferreira AP, Vieira LM, Cardoso JP, Menezes JC (2005) Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J Biotechnol 116:403–409

    Article  PubMed  CAS  Google Scholar 

  • Gebauer A, Scheper T, Schügerl K (1987) Penicillin acylase production by E. coli. Bioprocess Biosyst Eng 2:55–58

    Article  CAS  Google Scholar 

  • Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF (2010) Sensors in disposable bioreactors status and trends. Adv Biochem Eng Biotechnol 115:145–169

    Google Scholar 

  • Gorry P (1990) General least-squares smoothing and differentiation by the convolution (Savitzki-Golay) method. Anal Chem 62:570–573

    Article  CAS  Google Scholar 

  • Hagedorn A, Levadoux W, Groleau D, Tartakovsky B (2004) Evaluation of multiwavelength culture fluorescence for monitoring the aroma compound 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF) production. Biotechnol Prog 20:361–367

    Article  CAS  PubMed  Google Scholar 

  • Hantelmann K, Kollecker M, Hüll D, Hitzmann B, Scheper T (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. J Biotchnol 121:410–417

    Article  CAS  Google Scholar 

  • Hatch RT, Veilleux BG (1995) Monitoring of Saccharomyces cerevisiae in commercial bakers' yeast fermentation. Biotechnol Bioeng 46:371–374

    Article  CAS  PubMed  Google Scholar 

  • Henning B, Rautenberg J (2006) Process monitoring using ultrasonic sensor systems. Ultrason 44:e1395–e1399

    Article  Google Scholar 

  • Herrmann S, Oelßner W, Kaden H, Brischwein M, Wolf B (2000) The influence of different methods of disinfection on the function of electrochemical sensors. Sens Actuators B Chem 69:164–170

    Article  CAS  Google Scholar 

  • Hiratsuka T (1997) Monitoring the myosin ATPase reaction using a sensitive fluorescent probe: pyrene-labeled ATP. Biophys J 72:843–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joeris K, Frerichs JG, Konstantinov K, Scheper T (2002) In-situ microscopy: online process monitoring of mammalian cell cultures. Cytotech 38:129–134

    Article  CAS  Google Scholar 

  • Joo S, Brown SB (2008) Chemical sensors with integrated electronics. Chem Rev 108:638–651

    Article  CAS  PubMed  Google Scholar 

  • Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33:795–814

    Article  CAS  Google Scholar 

  • Kermis HR, Kostov Y, Rao G (2003) Rapid method for the preparation of a robust optical pH sensor. Analyst 128:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa J, Ohkubo T, Onuma M, Kadoya Y (2006) THz spectroscopic characterization of biomolecule/water systems by compact sensor chips. Appl Phys Lett 89:041114

    Article  CAS  Google Scholar 

  • Klimant I, Kühl M, Glud RN, Holst G (1997) Optical measurement of oxygen and temperature in microscale: strategies and biological applications. Sens Actuators B Chem 38:29–37

    Article  CAS  Google Scholar 

  • Knüttel T, Meyer H, Scheper T (2006) The application of two-dimensional fluorescence spectroscopy for the on-line evaluation of modified enzymatic enantioselectivities in organic solvents by forming substrate salts. Enzym Microb Technol 39:607–611

    Article  CAS  Google Scholar 

  • Köneke R, Comte A, Jürgens H, Kohls O, Lam H, Scheper T (1998) Faseroptische Sauerstoffsensoren für Biotechnologie, Umwelt- und Lebensmitteltechnik. Chem Ing Tech 70:1611–1617

    Article  Google Scholar 

  • Lai SW, Hou YJ, Che CM, Pang HL, Wong KY, Chang CK, Zhu NY (2004) Electronic spectroscopy, photophysical properties, and emission quenching studies of an oxidatively robust perfluorinated platinum porphyrin. Inorg Chem 43:3724–3732

    Article  CAS  PubMed  Google Scholar 

  • Lam H (2002) Entwicklung eines faseroptischen Chemo- und eines Biosensors und deren Einsatz in der Biotechnologie. Dissertation, Universität Hannover, Hannover

  • Landgrebe D, Haake C, Höpfner T, Beutel S, Hitzmann B, Scheper T, Rhiel M, Reardon KF (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol 88:11–22

    Article  CAS  PubMed  Google Scholar 

  • Lavine B (2000) Chemometrics. Anal Chem 72:91–98

    Article  CAS  Google Scholar 

  • Leardi B (1994) Application of a genetic algorithm to feature selection under full validation conditions to outliner detection. J Chemometr 8:65–79

    Article  CAS  Google Scholar 

  • Lee HLT, Boccazzi P, Gorret N, Ram RJ, Sinskey AJ (2004) In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vib Spectrosc 35:131–137

    Article  CAS  Google Scholar 

  • Lee SK, Suh EK, Cho NK, Park HD, Uneus L, Spetz AL (2005) Comparison study of ohmic contacts to 4H-silicon carbide in oxidizing ambient for harsh environment gas sensor applications. Solid State Electron 49:1297–1301

    Article  CAS  Google Scholar 

  • Lehmann M, Baumann W, Brischwein M, Gahle HJ, Freund I, Ehret R, Drechsler S, Palzer H, Kleintges SU, Wolf B (2001) Simultaneous measurement of cellular respiration and acidification with a single CMOS ISFET. Biosens Bioelectron 16:195–203

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Zhang XB, Han ZX, Akermark B, Sun LC, Shen GL, Yu RQ (2006) A wide pH range optical sensing system based on a sol-gel encapsulated amino-functionalised corrole. Analyst 131:388–393

    Article  CAS  PubMed  Google Scholar 

  • Linder P, Endes C, Bluma A, Höpfner T, Glindkamp A, Haake C, Landgrebe D, Riechers D, Baumfalk R, Hitzmann B, Scheper T, Reardon KF (2011) Disposable sensor systems. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, New York, pp 67–81

    Chapter  Google Scholar 

  • Marose S, Lindemann C, Ulber R, Scheper T (1999) Optical sensor systems for bioprocess monitoring. Trends Biotechnol 17:30–34

    Article  CAS  Google Scholar 

  • Matanguihan RM, Konstantinov KB, Yoshida T (1994) Dielectric measurement to monitor the growth and physiological states of biological cells. Bioprocess Biosyst Eng 11:213–222

    Article  CAS  Google Scholar 

  • McGovern AC, Broadhurst D, Taylor J, Kaderbhai N, Winson MK, Small DA, Rowland JJ, Kell DB, Goodacre R (2002) Monitoring of complex industrial bioprocesses for metabolite concentration using modern spectroscopies and machine learning: application to gibberellic acid production. Biotechnol Bioeng 78:527–538

    Article  CAS  PubMed  Google Scholar 

  • Miller C (2000) Chemometrics for on-line spectroscopy applications—theory and practice. J Chemom 14:513–528

    Article  CAS  Google Scholar 

  • Mills A, Chang Q, McMuray N (1992) Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Anal Chem 64:1383–1388

    Article  CAS  Google Scholar 

  • Müller JL, Neumann M, Scholl P, Hilterhaus L, Eckstein M, Thum O, Liese A (2010) Online monitoring of biotranformations in high viscous multiphase systems by means of FT-IR and chemometrics. Anal Chem 82:6008–6014

    Article  PubMed  CAS  Google Scholar 

  • Munkholm C, Walt DR (1988) A fiber-optic sensor for CO2 measurement. Talanta 35:109–112

    Article  CAS  PubMed  Google Scholar 

  • Noui L, Hill J, Keay PJ, Wang RY, Smith T, Yeung K, Habib G, Hoare M (2002) Development of a high resolution UV spectrophotometer for at-line monitoring of bioprocesses. Chem Eng Process 41:107–114

    Article  CAS  Google Scholar 

  • November EJ, Van Impe JF (2000) Evaluation of on-line viable biomass measurements during fermentation of Candida utilis. Bioprocess Eng 23:473–477

    Article  CAS  Google Scholar 

  • Ödman P, Lindvald Johansen C, Olsson L, Gernaey KV, Eliasson Lantz A (2010) Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations. Appl Microbiol Biotechnol 86:1745–1759

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo T, Onuma J, Kitagawa J, Kadoya Y (2006) Micro-strip-line-based sensing chips for characterization of polar liquids in terahertz regime. Appl Phys Lett 88:212511

    Article  CAS  Google Scholar 

  • Pekeler T, Lindermann C, Scheper T, Hitzmann B (1998) Prediction of bioprocess from two-dimensional fluorescence specta. Chem Ing Tech 70:1610–1611

    Article  CAS  Google Scholar 

  • Pons MN, Le Bonte S, Potier O (2004) Spectral analysis and fingerprinting for biomedia characterisation. J Biotechnol 113:211–230

    Article  CAS  PubMed  Google Scholar 

  • Potter K, Kleinber RL, Brockmann FJ, McFarland WE (1996) Assay for bacteria in porous media by duffusion weighted NMR. J Magn Reson Ser B 113:9–15

    Article  CAS  Google Scholar 

  • Prediger A, Bluma A, Höpfner T, Lindner P, Beutel S, Müller JJ, Hilterhaus L, Liese A, Scheper T (2011) In-situ-Mikroskopie zur Online-Überwachung von Enzymträgern und Zweiphasenprozessen. Chem Ing Tech 83:884–887

    Article  CAS  Google Scholar 

  • Rehbock C, Beutel S, Brückerhoff T, Hitzmann B, Riecher D, Rudolph G, Stahl F, Scheper T, Friehs K (2008) Bioprozessanalytik. Chem Ing Tech 80:267–286

    Article  CAS  Google Scholar 

  • Resa P, Elvira L, Montero de Espinosa F (2004) Concentration in alcoholic fermentation processes from ultrasonic velocity measurements. Food Res Int 37:587–594

    Article  CAS  Google Scholar 

  • Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury P, Harvey LM, McNeil B (2006) At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy. Anal Chim Acta 561:218–224

    Article  CAS  Google Scholar 

  • Rudolph G, Brückerhoff T, Bluma A, Korb G, Scheper T (2007) Optical inline measurement procedure for cell count and cell size determination in bioprocess technology. Chem Ing Tech 79:42–51

    Article  CAS  Google Scholar 

  • Sato K, Yoshida Y, Hirahara T, Ohba T (2000) On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. J Biosci Bioeng 90:294–301

    Article  CAS  PubMed  Google Scholar 

  • Scheper T, Gebauer A, Sauerbrei A, Niehoff A, Schügerl K (1984) Measurement of biological parameters during fermentation processes. Anal Chim Acta 163:111–118

    Article  CAS  Google Scholar 

  • Scheper T, Müller C, Anders KD, Eberhardt F, Plötz F, Schelp C, Thordsen O, Schügerl K (1993) Optical sensors for biotechnological applications. Biosens Bioelectron 9:73–83

    Article  Google Scholar 

  • Scheper T, Hilmer J, Lammers F, Mueller C, Reinecke M (1996) Biosensors in bioprocess monitoring. J Chromat 725:3–12

    Article  Google Scholar 

  • Scheper T, Hitzmann B, Staerk E, Ulber R, Faurie R, Sosnitza P, Reardon KF (1999) Bioanalytics: detailed insight into bioprocesses. Anal Chim Acta 400:121–143

    Article  CAS  Google Scholar 

  • Schügerl K (2001) Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J Biotechnol 85:149–173

    Article  PubMed  Google Scholar 

  • Schulmann SG, Chen S, Bai F, Leiner MJP, Weis L, Wolfbeis OS (1995) Dependence of fluorescence of immobilized 1-hydroxypyrene-3,6,8-trisulfonate on solution pH: extension of the range of applicability of a ph fluorosensor. Anal Chim Acta 304:165–170

    Article  Google Scholar 

  • Severinghaus JW, Bradley AF (1958) Electrodes for blood pO2 and pCO2 determination. J Appl Physiol 13:515–520

    Article  CAS  PubMed  Google Scholar 

  • Smith AC, Hahn CEW (1975) Studies with Severinghaus pCO2 electrode stability, memory and S plots. Br J Anaesth 47:553–558

    Article  CAS  PubMed  Google Scholar 

  • Suhr H, Wehnert G, Schneider K, Bittner C, Scholz T, Geissler P, Jahnr B, Scheper T (1995) In-situ microscopy for online characterization of cell-populations in bioreactors including cell-concentration measurements by depth from focus. Biotechnol Bioeng 47:106–116

    Article  CAS  PubMed  Google Scholar 

  • Surribas A, Geissler D, Gierse A, Scheper T, Hitzmann B, Montesinos JL, Valero F (2006) State variables monitoring by in-situ multi-wavelength fluorescence spectroscopy in heterologous protein production by Pichia pastoris. J Biotechnol 124:412–419

    Article  CAS  PubMed  Google Scholar 

  • Tan WH, Shi ZY, Kopelman R (1992) Development of submicron chemical fiber optic sensors. Anal Chem 64:2985–2990

    Article  CAS  Google Scholar 

  • Tartakovsky B, Sheintuch M, Hilmer JM, Scheper T (1996) Application of scanning fluorometry for monitoring of a fermentation process. Biotechnol Prog 12:126–131

    Article  CAS  PubMed  Google Scholar 

  • Teixeira AP, Oliveira R, Alves PM, Corrondo MJT (2009) Advances in on-line monitoring and control of mammalian cel cultures: supporting the PAT initiative. Biotechnol Adv 27:726–732

    Article  CAS  PubMed  Google Scholar 

  • Trevisan MG, Poppi RJ (2008) Direct determination of ephedrine intermediate in a biotransformation reaction using infrared spectroscopy and PLS. Tatlanta 75:1021–1027

    Article  CAS  Google Scholar 

  • Ulber R, Fredrichs JG, Beutel S (2003) Optical sensor systems for bioprocess monitoring. Anal Bioanal Chem 376:342–348

    Article  CAS  PubMed  Google Scholar 

  • Uttamlal M, Walt DR (1995) A fiber-optic carbon dioxide sensor for fermentation monitoring. Biotechnol 13:567–601

    Google Scholar 

  • Van Steenkiste F, Baert K, Debruyker D, Spiering V, Van der Schoot B, Arquint P, Born R, Schumann K (1997) A microsensor array for biochemichal sensing. Sens Actuators B Chem 44:409–412

    Article  Google Scholar 

  • Vankeirsbilck T, Vercauteren A, Baeyens W, Van der Weken G, Verpoort F, Vergote G, Remon JP (2002) Applications of Raman spectroscopy in pharmaceutical analysis. Trac-Trends Anal Chem 21:869–877

    Article  CAS  Google Scholar 

  • Voigt H, Schitthelm F, Lange T, Kullick T, Ferretti R (1997) Diamond-like carbon-gate pH-ISFET. Sens Actuators B Chem 44:441–445

    Article  CAS  Google Scholar 

  • Vojinović V, Cabral JMS, Fonseca LP (2006) Real-time bioprocess monitoring part I: in-situ sensors. Sens Actuators B Chem 114:1083–1091

    Article  CAS  Google Scholar 

  • Voraberger HS, Kreimeier H, Biebernik K, Kern W (2001) Novel oxygen optrode withstanding autoclavation: technical solutions and performance. Sens Actuators B Chem 74:179–185

    Article  CAS  Google Scholar 

  • Weigl BH, Wolfbeis OS (1995) Sensitivity studies on optical carbon dioxide sensors based on ion pairing. Sens Actuators B Chem 28:151–156

    Article  CAS  Google Scholar 

  • Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669

    Article  CAS  Google Scholar 

  • Yamamoto K, Tominaga K, Sasakawa H, Tamura A, Murakami H, Ohtake H, Sarukura N (2005) Terahertz time-domain spectroscopy of amino acids and polypeptides. Biophys J 89:L22–L24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabriskie DW, Humphrey AE (1978) Estimation of fermentation biomass concentration by measuring culture fluorescence. Appl Environ Microbiol 35:337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KF (2004) Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 87:243–254

    Article  CAS  PubMed  Google Scholar 

  • Zeiser A, Bedard C, Voyer R, Jardin B, Tom R, Kamen AA (1999) On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol Bioeng 63:122–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang XC (2002) Terahertz wave imaging: horizons and hurdles. Phys Med Biol 47:3667–3677

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Jin Y, Xue J (1992) Fabrication and characterization of a sterilizable pH-optrode. Fresenius J Anal Chem 342:42–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Beutel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beutel, S., Henkel, S. In situ sensor techniques in modern bioprocess monitoring. Appl Microbiol Biotechnol 91, 1493–1505 (2011). https://doi.org/10.1007/s00253-011-3470-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3470-5

Keywords

Navigation