Skip to main content
Log in

Experimental validation of a nonequilibrium model of CO2 fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Carbon dioxide (CO2) availability strongly affects the productivity of algal photobioreactors, where it is dynamically exchanged between different compartments, phases, and chemical forms. To understand the underlying processes, we constructed a nonequilibrium mathematical model of CO2 dynamics in a flat-panel algal photobioreactor. The model includes mass transfer to the algal suspension from a stream of bubbles of CO2-enriched air and from the photobioreactor headspace. Also included are the hydration of dissolved CO2 to bicarbonate ion (HCO 3 ) as well as uptake and/or cycling of these two chemical forms by the cells. The model was validated in experiments using a laboratory-scale flat-panel photobioreactor that controls light, temperature, and pH and where the concentration of dissolved CO2, and partial pressure of CO2 in the photobioreactor exhaust are measured. First, the model prediction was compared with measured CO2 dynamics that occurred in response to a stepwise change in the CO2 partial pressure in the gas sparger. Furthermore, the model was used to predict CO2 dynamics in photobioreactors with unicellular, nitrogen-fixing cyanobacterium Cyanothece sp. The metabolism changes dramatically during a day, and the distribution of CO2 is expected to exhibit a pronounced diurnal modulation that significantly deviates from chemical equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a B :

Specific gas–liquid interfacial bubble area (m−1)

h :

Henry constant (m3 Pa mol−1)

k :

Rate of CO2 hydration (s−1)

k L :

Liquid-phase mass transfer coefficient (m s−1)

l :

Rate of HCO 3 dehydration (s−1)

\( n_{{{\text{CO}}_{2} }} \) :

Number of CO2 molecules (mol)

r B :

Bubble radius (m)

J :

Aeration rate (m3 s−1)

N B :

Number of bubbles

\( P_{{{\text{CO}}_{2} }}^{\text{bubble}} \) :

Partial CO2 pressure inside bubble (Pa)

\( P_{{{\text{CO}}_{2} }}^{\text{IN}} \) :

Partial CO2 pressure of gas entering bioreactor (Pa)

\( P_{{{\text{CO}}_{2} }}^{\text{OUT}} \) :

Partial CO2 pressure of gas leaving bioreactor headspace (Pa)

\( P_{{{\text{CO}}_{2} }}^{\text{X}} \) :

Partial CO2 pressure of bubble entering bioreactor headspace (Pa)

R :

Universal gas constant (m3 Pa K−1 mol−1)

S B :

Bubble surface (m2)

S H :

Liquid to headspace surface (m2)

T :

Temperature of the photobioreactor (K)

V B :

Volume of bubble (m3)

V H :

Volume of headspace (m3)

V L :

Volume of liquid (m3)

\( \alpha_{{{\text{CO}}_{2} }} \) :

Mass transfer rate from bubble to liquid phase (mol s−1)

\( \beta_{{{\text{CO}}_{2} }} \) :

Mass transfer rate from headspace to liquid phase (mol s−1)

\( \gamma_{{{\text{dCO}}_{2} }} \) :

Rate of dissolved carbon dioxide uptake by algae (mol s−1)

\( \gamma_{{{\text{HCO}}_{3}^{ - } }} \) :

Rate of bicarbonate uptake by algae (mol s−1)

τ :

Bubble lifetime (s)

A :

Flux of CO2 into bioreactor (mol s−1)

B :

Flux of CO2 into headspace (mol s−1)

Γ:

Flux of CO2 out of bioreactor (mol s−1)

[dCO2]:

Concentration of CO2 dissolved in liquid phase (mol m−3)

[HCO 3 ]:

Concentration of bicarbonate ions in liquid phase (mol m−3)

References

  1. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  2. Červený J, Šetlík I, Trtílek M, Nedbal L (2009) Photobioreactor for cultivation and real-time, in situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng Life Sci 9(3):247–253. doi:10.1002/elsc.200800123

    Article  Google Scholar 

  3. Červený J, Nedbal L (2009) Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock. J Biol Rhythms 24(4):295–303. doi:10.1177/0748730409338367

    Article  PubMed  Google Scholar 

  4. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131. doi:10.1016/j.tibtech.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  5. Chrismadha T, Borowitzka M (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J Appl Phycol 6(1):67–74. doi:10.1007/BF02185906

    Article  Google Scholar 

  6. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296. doi:10.1126/science.290.5490.291

    Article  CAS  PubMed  Google Scholar 

  7. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131. doi:10.1146/annurev.arplants.56.032604.144052

    Article  CAS  PubMed  Google Scholar 

  8. Jansson C, Northen T (2010) Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol 21(3):365–371. doi:10.1016/j.copbio.2010.03.017

    Article  CAS  PubMed  Google Scholar 

  9. Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50(1):539–570. doi:10.1146/annurev.arplant.50.1.539

    Article  CAS  PubMed  Google Scholar 

  10. Lafarga-De la Cruz F, Valenzuela-Espinoza E, Millan-Nunez R, Trees CC, Santamaria-del-Angel E, Nunez-Cebrero F (2006) Nutrient uptake, chlorophyll a and carbon fixation by Rhodomonas sp. (Cryptophyceae) cultured at different irradiance and nutrient concentrations. Aquacult Eng 35(1):51–60. doi:10.1016/j.aquaeng.2005.08.004

    Article  Google Scholar 

  11. Lal R (2008) Carbon sequestration. Philos Trans R Soc B Biol Sci 363(1492):815–830. doi:10.1098/rstb.2007.2185

    Article  CAS  Google Scholar 

  12. Liu Z, Dreybrodt W, Wang H (2010) A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Sci Rev 99(3–4):162–172. doi:10.1016/j.earscirev.2010.03.001

    Article  CAS  Google Scholar 

  13. Meunier PC, Colon-Lopez MS, Sherman LA (1998) Photosystem II cyclic heterogeneity and photoactivation in the diazotrophic, unicellular cyanobacterium Cyanothece species ATCC 51142. Plant Physiol 116(4):1551–1562

    Article  CAS  PubMed  Google Scholar 

  14. Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2006) Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem 100(1–2):80–94. doi:10.1016/j.marchem.2005.12.001

    Article  CAS  Google Scholar 

  15. Nedbal L, Trtílek M, Červený J, Komárek O, Pakrasi HB (2008) A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng 100(5):902–910. doi:10.1002/bit.21833

    Article  CAS  PubMed  Google Scholar 

  16. Price GD, Badger MR, Woodger FJ, Long BM (2007) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot. doi:10.1093/jxb/erm112

  17. Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Mikrobiol 25(4):392–428

    Article  CAS  PubMed  Google Scholar 

  18. Raghavan G, Haridevi CK, Gopinathan CP (2008) Growth and proximate composition of the Chaetoceros calcitrans f. pumilus under different temperature, salinity and carbon dioxide levels. Aquacult Res 39(10):1053–1058. doi:10.1111/j.1365-2109.2008.01964.x

    Article  Google Scholar 

  19. Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc B Biol Sci 363(1504):2641–2650. doi:10.1098/rstb.2008.0020

    Article  CAS  Google Scholar 

  20. Riding R (2009) An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million years ago? Palaios 24(10):685–696. doi:10.2110/palo.2009.p09-033r

    Article  Google Scholar 

  21. Schneegurt MA, Sherman DM, Sherman LA (1997) Growth, physiology, and ultrastructure of a diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, in mixotrophic and chemoheterotrophic cultures. J Phycol 33(4):632–642. doi:10.1111/j.1529-8817.1997.tb03958.x

    Article  CAS  Google Scholar 

  22. Schulz KG, Riebesell U, Rost B, Thoms S, Zeebe RE (2006) Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. Mar Chem 100(1–2):53–65. doi:10.1016/j.marchem.2005.11.001

    Article  CAS  Google Scholar 

  23. Sherman LA, Meunier P, Colon-Lopez MS (1998) Diurnal rhythms in metabolism: a day in the life of a unicellular, diazotrophic cyanobacterium. Photosynth Res 58(1):25–42. doi:10.1023/A:1006137605802

    Article  CAS  Google Scholar 

  24. Spalding MH, Portis AR (1985) A model of carbon dioxide assimilation in Chlamydomonas reinhardii. Planta 164(3):308–320. doi:10.1007/BF00402942

    Article  CAS  Google Scholar 

  25. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28(2):126–128. doi:10.1038/nbt0210-126

    Article  CAS  PubMed  Google Scholar 

  26. Tchernov D, Hassidim M, Luz B, Sukenik A, Reinhold L, Kaplan A (1997) Sustained net CO2 evolution during photosynthesis by marine microorganism. Curr Biol 7(10):723–728. doi:10.1016/s0960-9822(06)00330-7

    Article  CAS  PubMed  Google Scholar 

  27. Tchernov D, Silverman J, Luz B, Reinhold L, Kaplan A (2003) Massive light-dependent cycling of inorganic carbon between oxygenic photosynthetic microorganisms and their surroundings. Photosynth Res 77(2):95–103. doi:10.1023/A:1025869600935

    Article  CAS  PubMed  Google Scholar 

  28. Tyrrell T, Zeebe RE (2004) History of carbonate ion concentration over the last 100 million years. Geochim Cosmochim Acta 68(17):3521–3530. doi:10.1016/j.gca.2004.02.018

    Article  CAS  Google Scholar 

  29. van Baalen C (1962) Studies on marine blue-green algae. Bot Mar 4:129–139

    Article  Google Scholar 

  30. Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718. doi:10.1007/s00253-008-1518-y

    Article  CAS  PubMed  Google Scholar 

  31. Zeebe RE, Wolf-Gladrow D (2001) Equilibrium. In: Zeebe RE, Wolf-Gladrow D (eds) CO2 in seawater. Elsevier, Amsterdam, pp 1–84

    Google Scholar 

Download references

Acknowledgments

L.N. and J.Č. were supported by grants AV0Z60870520 (Czech Academy of Sciences), and by GAČR 206/09/1284 (Czech Science Foundation) as well as by Photon Systems Instruments, Ltd. N.K. and A.K. were supported by grants from the Israel Science Foundation (Bikura program) and the Hebrew University. The authors are grateful to Rainer Machne of Universität Wien for critically checking the model equations and reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Nedbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedbal, L., Červený, J., Keren, N. et al. Experimental validation of a nonequilibrium model of CO2 fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor. J Ind Microbiol Biotechnol 37, 1319–1326 (2010). https://doi.org/10.1007/s10295-010-0876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0876-5

Keywords

Navigation