Skip to main content
Log in

Carbon paste electrodes in the new millennium

  • Invited Review
  • Published:
Central European Journal of Chemistry

Abstract

In this review (with 500 refs), both electrochemistry and electroanalysis with carbon paste-based electrodes, sensors, and detectors are of interest, when attention is focused on the research activities in the years of new millennium. Concerned are all important aspects of the field, from fundamental investigations with carbon paste as the electrode material, via laboratory examination of the first electrode prototypes, basic and advanced studies of various electrode processes and other phenomena, up to practical applications to the determination of inorganic ions, complexes, and molecules. The latter is presented in a series of extensive tables, offering a nearly complete survey of methods published within the period of 2001–2008. Finally, the latest trends and outstanding achievements are also outlined and future prospects given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

List of Full-Text Citations

  1. P. Zuman, Electrolysis with a dropping mercury electrode: J. Heyrovský’s contribution to electrochemistry. Critical Reviews in Analytical Chemistry, 31 (2001): 281–289.

    Article  CAS  Google Scholar 

  2. I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, and J. Wang, Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis, 21 (2009): 7–28.

    Article  CAS  Google Scholar 

  3. R. N. Adams, Carbon paste electrodes. Analytical Chemistry, 30 (1958): 1576–1576.

    Article  CAS  Google Scholar 

  4. R. N. Adams, Electrochemistry at Solid Electrodes (New York: M. Dekker, 1969).

    Google Scholar 

  5. R. N. Adams, Carbon paste electrodes: A Review. Review of Polarography (Kyoto, Japan), 11 (1963): 71–78.

    CAS  Google Scholar 

  6. M. Březina, Estimation of electrochemical activity of carbon using a paste electrode. Nature, 212 (1966): 283–283.

    Article  Google Scholar 

  7. J. Heyrovský, “Elektrolysa se rtut’ovou kapkovou kathodou” (in English: Electrolysis with the mercury drop cathode). Chemické Listy XVI (1922): 258–264.

    Google Scholar 

  8. C. Olson and R. N. Adams, Carbon paste electrodes. Application to anodic voltam-metry. Analytica Chimica Acta, 22 (1960): 582–589, plus C. Olson and R. N. Adams, Carbon paste electrodes application to cathodic reductions and anodic stripping voltammetry. Analytica Chimica Acta, 29 (1963): 358–363.

    Article  CAS  Google Scholar 

  9. T. Kuwana and W. G. French, Carbon paste electrodes containing some electroactive compounds. Analytical Chemistry, 36 (1964): 241–242.

    Article  CAS  Google Scholar 

  10. L. S. Marcoux, K. G. Prater, B. G. Prater, and R. N. Adams, Nonaqueous carbon paste electrode. Analytical Chemistry, 37 (1965): 1446–1447.

    Article  CAS  Google Scholar 

  11. D.G. Davis and M.E. Everhart, Chronopotentiometry of the bromide-bromine couple at platinum and carbon paste electrodes. Analytical Chemistry, 36 (1965): 38–40.

    Article  Google Scholar 

  12. A. L. Beilby and B.R. Mather, Resistance effects of two types of carbon paste electrodes. Analytical Chemistry, 37 (1965): 766–768.

    Article  CAS  Google Scholar 

  13. C. A. H. Chambers and J. K. Lee, Studies of the extraction of organic molecules into the carbon-paste electrode. Journal of Electroanalytical Chemistry, 15 (1967): 309–314.

    Article  Google Scholar 

  14. Gy. Farsang, Voltammetric properties and analytical uses of carbon paste electrodes prepared with silicone oil. Acta Chimica Academiae Scientiarum Hungaricae, 45 (1965): 163–176.

    CAS  Google Scholar 

  15. H. Monien, H. Specker, and K. Zinke, Application of various carbon electrodes for inverse voltammetric determination of silver. Fresenius Zeitschrift fuer Analytische Chemie, 225 (1967): 342–351.

    Article  CAS  Google Scholar 

  16. Š. Mesarić and E. M. F. Dahmen, Ion-selective carbon-paste electrodes for halides and silver(I) ions. Analytica Chimica Acta, 64 (1973): 431–438.

    Article  Google Scholar 

  17. D. Bauer and M. P. Gaillochet, Etude du comportement de la pate de carbone a compose electroactif incorpore. Electrochimica Acta, 19 (1974): 597–606.

    Article  CAS  Google Scholar 

  18. J. Lindquist, A Study of seven different carbon paste electrodes. Journal of Electroanalytical Chemistry, 52 (1974): 37–46.

    Article  CAS  Google Scholar 

  19. P. Söderhjelm, A Comparison of the analytical utility of three different potential ramp techniques in voltammetry, using a carbon-paste electrode. Journal of Electroanalytical Chemistry, 71 (1976): 109–115.

    Article  Google Scholar 

  20. R. N. Adams, Probing brain chemistry with electroanalytical techniques. Analytical Chemistry, 48 (1976): 1126A–1138A.

    Article  CAS  Google Scholar 

  21. T. Yao and S. Musha, Electrochemical enzymic determinations of ethanol and L-lactic acid with a carbon paste electrode modified chemically with nicotinamide adenine dinucleotide. Analytica Chimica Acta, 110 (1979): 203–209.

    Article  CAS  Google Scholar 

  22. K. Ravichandran and R. P. Baldwin, Chemically modified carbon paste electrodes. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 126 (1981): 293–300.

    Article  CAS  Google Scholar 

  23. M. E. Rice Z. Galus, and R. N. Adams, Graphite paste electrodes: Effects of paste composition and surface states on electron-transfer rates. Journal of Electroanalytical Chemistry, 143 (1983): 89–102.

    Article  Google Scholar 

  24. F. N. Albahadily and H. A. Mottola, Improved response of carbon-paste electrodes for electrochemical detection in flow systems by pretreatment with surfactants. Analytical Chemistry, 59 (1987): 958–962.

    Article  CAS  Google Scholar 

  25. W. Matuszewski and M. Trojanovicz, Graphite paste-based enzymatic glucose electrode for flow-injection analysis. Analyst (UK), 113 (1988): 735–738.

    Article  CAS  Google Scholar 

  26. K. Kalcher, Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis, 2 (1990): 419–433.

    Article  CAS  Google Scholar 

  27. I. Švancara, K. Vytřas, F. Renger, and M.R. Smyth, Application of carbon paste electrodes in electroanalysis. A Review. Sborník Vědeckých Prací, Vysoká Škola Chemicko-technologická; Pardubice, 56 (1992/93): 21–57.

    Google Scholar 

  28. N. A. Ulakhovich, E. P Medyantseva, and G.K. Budnikov, Carbon-paste electrodes as chemical sensors in voltammetry. Journal of Analytical Chemistry, 48 (1993): 980–998.

    CAS  Google Scholar 

  29. K. Kalcher, J. M. Kauffmann, J. Wang, I. Švancara, K. Vytřas, C. Neuhold, and Z. Yang, Sensors based on carbon paste in electrochemical analysis: A Review with particular emphasis on the period of 1990—1993. Electroanalysis, 7 (1995): 5–22.

    Article  CAS  Google Scholar 

  30. L. Gorton, Carbon paste electrodes modified with enzymes, tissues, and cells (A Review). Electroanalysis, 7 (1995): 23–45.

    Article  CAS  Google Scholar 

  31. K. Kalcher, X. H. Cai, G. Koelbl, I. Švancara, and K. Vytřas, New trends in voltam-metric analysis: modified carbon paste electrodes. Sborník Vědeckých Prací, Vysoká Škola Chemickotechnologická; Pardubice, 57 (1994): 5–27.

    Google Scholar 

  32. K. Kalcher, K. Schachl, I. Švancara, K. Vytřas, and H. Alemu, Recent progress in the development of electrochemical carbon paste sensors. Scientific Papers of the University of Pardubice, Series A; 3 (1997): 57–85.

    CAS  Google Scholar 

  33. Z.-Q. Zhang, H. Liu, and Z.-F. Li, New developments of carbon paste electrode (Review). Fenxi Kexue Xuebao (Journal of Analytical Science), 14 (1998): 80–86; Chemical Abstracts, 125 (1998): 175403x.

    CAS  Google Scholar 

  34. R. D. O’Neill, Sensor-tissue interactions in neurochemical analysis with carbon paste electrodes in vivo. Analyst (UK), 118 (1993): 433–438.

    Article  Google Scholar 

  35. C. D. Blaha, Evaluation of stearate-graphite paste electrodes for chronic measurement of extracellular dopamine concentrations in mammalian brain. Pharmacology, Biochemistry and Behavior, 55 (1996): 351–364.

    Article  CAS  Google Scholar 

  36. I. Švancara, J. Zima, and K. Schachl, The testing of carbon paste electrodes: an example on the characterization of a carbon paste electrode prepared from newly used graphite powder. Scientific Papers of the University of Pardubice, Series A; 4 (1998): 49–63.

    Google Scholar 

  37. I. Švancara and K. Schachl, Testing of unmodified carbon paste electrodes. Chemické Listy, 93(199): 490–499.

  38. I. Švancara and K. Vytřas, Physico-chemical processes in analytical electrochemistry with carbon paste electrodes. An overview. Chemija (Vilnius), 11 (2000): 18–27.

    Google Scholar 

  39. I. Švancara, K. Vytřas, J. Barek, and J. Zima, Carbon paste electrodes in modern electroanalysis. Critical Reviews in Analytical Chemistry, 31 (2001): 311–345.

    Article  Google Scholar 

  40. K. Kalcher, I. Švancara, R. Metelka, K. Vytřas, and A. Walcarius, Heterogeneous Electrochemical Carbon Sensors, in The Encyclopedia of Sensors, Vol. 4; eds. C. A. Grimes, E. C. Dickey, and M. V. Pishko (Stevenson Ranch: American Scientific Publishers, 2006), ch. 4, pp. 283–429.

    Google Scholar 

  41. J. Zima, I. Švancara, J. Barek, and K. Vytřas, Recent Advances in Electroanalysis of Organic and Biological Compounds at Carbon Paste Electrodes. Critical Reviews in Analytical Chemistry, 39 (2009): 204–227.

    Article  CAS  Google Scholar 

  42. G. U. Flechsig, M. Kienbaum, and P. Gruendler, Ex situ atomic force microscopy of bismuth film deposition at carbon paste electrodes. Electrochemistry Communations, 7 (2005) 1091–1097.

    Article  CAS  Google Scholar 

  43. F. D. Munteanu, M. Mosbach, A. Schulte, W. Schuhmann, and L. Gorton, Fast-scan cyclic voltammetry and scanning electrochemical microscopy studies of the pH-dependent dissolution of 2-electron mediators immobilized on zirconium phosphate containing carbon pastes. Electroanalysis, 14 (2002): 1479–1487.

    Article  CAS  Google Scholar 

  44. T. Mikysek, A. Ion, I. Švancara, K. Vytřas, and F. G. Banica, Carbonaceous Materials for Single-Use Metal Ion Sensors. Quality Assesment by Electrochemical Impedance Spectrometry; in Sensing in Electroanalysis, eds. K. Vytřas and K. Kalcher (Pardubice: University of Pardubice, 2005), pp. 19–27.

    Google Scholar 

  45. J.-M. Zen, A. S. Kumar and H.-W. Chen, Electrochemical behavior of stable cinder/prussian blue analogue and its mediated nitrite oxidation. Electroanalysis, 13 (2001): 1171–1178.

    Article  CAS  Google Scholar 

  46. T. Mikysek, I. Švancara, M. Bartoš, K. Kalcher, K. Vytřas, J. Ludvík: “New Approaches to the Characterization of Carbon Paste Electrodes Based on Ohmic Resistance and Qualitative Carbon Paste Indexes”. Analytical Chemistry, 81 (2009): 6327–6333.

    Article  CAS  Google Scholar 

  47. J. Wang, Real-Time Electrochemical Monitoring: Toward Green Analytical Chemistry. Accounts of Chemical Research, 35 (2002): 811–816.

    Article  CAS  Google Scholar 

  48. J. Wang, Ü. A. Kirgöz, J.-W. Mo, J. Lu, A.N. Kawde, and A. Muck, Glassy carbon paste electrodes. Electrochem. Commun., 3 (2001): 203–208.

    Article  CAS  Google Scholar 

  49. S. Varma, C. K. Mitra, Low frequency impedance studies on covalently modified glassy carbon paste. Electroanalysis, 14 (2002): 1587–1596.

    Article  CAS  Google Scholar 

  50. J. Zima, J. Barek, and A. Muck, Monitoring of environmentally and biologically important substances at carbon paste electrodes. Revista de Chimie (Bucharest), 55 (2005): 657–662.

    Google Scholar 

  51. G. Li, Z.-M. Ji, and K.-B. Wu, Square wave anodic stripping voltammetric determination of Pb2+ using acetylene black paste electrode based on the inducing adsorption ability of I(-). Analytica Chimica Acta, 577 (2006): 178–182.

    Article  CAS  Google Scholar 

  52. G. Li, C.-D. Wan, Z.-M. Ji, and K.-B. Wu, An electrochemical sensor for Cd2+ based on the inducing adsorption ability of I(-). Sensors & Actuators B, Chemical; 124 (2007): 1–5.

    Article  CAS  Google Scholar 

  53. A. J. G. Zarbin, (Nano)materials chemistry. Quimica Nova, 30 (2007): 1469–1479.

    CAS  Google Scholar 

  54. R. I. Stefan and S. G. Bairu, Monocrystalline diamond paste-based electrodes and their applications for the determination of Fe(II) in vitamins. Analytical Chemistry., 75 (2003): 5394–5398.

    Article  CAS  Google Scholar 

  55. R. I. Stefan, S. G. Bairu, and J. F. van Staden, Diamond Paste Based Electrodes for determination of iodide in vitamins and table salt. Analytical Letters, 36 (2003): 1493–1500.

    Article  CAS  Google Scholar 

  56. R. I. Stefan, S. G. Bairu, and J. F. van Staden, Diamond paste-based electrodes for determination of Cr(III) in pharmaceutical compounds. Analytical and Bioanalytical Chemistry, 376 (2003): 844–847.

    Article  CAS  Google Scholar 

  57. R. I. Stefan and R. G. Bokretsion, Determination of creatine and creatinine using a diamond paste based electrode. Instrumentation Science Technology, 31 (2003): 183–188.

    Article  CAS  Google Scholar 

  58. R. I. Stefan and S. G. Bairu, Diamond paste based electrodes for the determination of chromium(VI) at trace levels. Instrumentation Science Technology, 31 (2003): 261–267.

    Article  CAS  Google Scholar 

  59. R. I. Stefan and R. G. Bokretsion, Diamond paste based immunosensor for the determination of azidothymidine. Journal of Immunoassay and Immunochemistry, 24 (2003): 319–324.

    Article  CAS  Google Scholar 

  60. R. I. Stefan and S. G. Bairu, Diamond paste based electrodes for the determination of Pb(II) at trace concentration levels. Talanta, 63 (2004): 605–608.

    Article  CAS  Google Scholar 

  61. R. I. Stefan, R. M. Nejem, J. F. van Staden, and H. Y. Aboul Enein, New ampero-metric biosensors based on diamond paste for the assay of L- and D-pipecolic acids in serum samples. Preparative Biochemistry and Biotechnology, 34 (2004): 135–143.

    Article  CAS  Google Scholar 

  62. A. Miranda Hernández, M. E. Rincón, and I. González, Characterization of carbon-fullerene-silicone oil composite paste electrodes. Carbon, 43 (2005): 1961–1967.

    Article  CAS  Google Scholar 

  63. S.V. Lokesh, B. S. Sherigara, A.T. Jayadev, H.M. Mahesh, and R.J. Mascarenhas, Electrochemical reactivity of C(60) modified carbon paste electrode by physical vapor deposition method. International Journal of Electrochemical Science, 3 (2008):578–587.

    CAS  Google Scholar 

  64. S. B. Hočevar and B. Ogorevc, Preparation and characterization of carbon paste micro-electrode based on carbon nano-particles. Talanta, 74 (2007): 405–411.

    Article  CAS  Google Scholar 

  65. G. Shul, M. A. Murphy, G. D. Wilcox, F. Marken, M. Opallo, Effects of carbon nanofiber composites on electrode processes involving liquid vertical bar liquid ion transfer. Journal of Solid State Electrochemistry, 9 (2005): 874–881.

    Article  CAS  Google Scholar 

  66. G. A. Rivas, M. D. Rubianes, M. L. Pedano, N. F. Ferreyra, G. L. Luque, M. C. Rodriguez, and S. A. Miscoria, Carbon nanotubes paste electrodes: A New alternative for the development of electrochemical sensors. Electroanalysis, 19 (2007): 823–831.

    Article  CAS  Google Scholar 

  67. F. Ricci, A. Amine, D. Moscone, and G. Palleschi, Prussian blue modified carbon nanotube paste electrodes: A Comparative study and a biochemical application. Analytical Letters, 36 (2003): 1921–1938.

    Article  CAS  Google Scholar 

  68. R. Antiochia, I. Lavagnini, F. Magno, F. Valentini, and G. Palleschi, Single-wall carbon nanotube paste electrodes: A comparison with carbon paste, platinum and glassy carbon electrodes via cyclic voltammetric data. Electroanalysis, 16 (2004): 1451–1458.

    Article  CAS  Google Scholar 

  69. N. S. Lawrence, R. P. Deo, and J. Wang, Detection of homocysteine at carbon nanotube paste electrodes. Talanta, 63 (2004): 443–449.

    Article  CAS  Google Scholar 

  70. M. D. Rubianes and G. A. Rivas, Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanalysis, 17 (2005): 73–78.

    Article  CAS  Google Scholar 

  71. M. Chicharro, E. Bermejo, M. Moreno, A. Sanchez, A. Zapardiel, and G. A. Rivas, Adsorptive stripping voltammetric determination of amitrole at a multi-wall carbon nanotubes paste electrode. Electroanalysis, 17 (2005): 476–482.

    Article  CAS  Google Scholar 

  72. S.-Y. Ly, S.-K. Kim, T.-H. Kim, Y.-S. Jung, and S.-M. Lee, Measuring mercury ion concentration with a carbon nano tube paste electrode using the cyclic voltam-metry method. Journal of Applied Electrochemistry, 35 (2005): 567–571.

    Article  CAS  Google Scholar 

  73. R. Antiochia, I. Lavagnini, and F. Magno, Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of redox mediator in solution and dissolved in the paste. Anal. Bioanal. Chem., 381 (2005): 1355–1361.

    Article  CAS  Google Scholar 

  74. J.-B. He, X.-Q. Lin, and J. Pan, Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin: A comparison with graphite paste electrode via voltammetry and chronopotentiometry. Electroanalysis, 17 (2005): 1681–1686.

    Article  CAS  Google Scholar 

  75. M. Chicharro, A. Sanchez, E. Bermejo, A. Zapardiel, M. D. Rubianes, and G. A. Rivas, Carbon nanotubes paste electrodes as new detectors for capillary electrophoresis. Analytica Chimica Acta, 543 (2005): 84–91.

    Article  CAS  Google Scholar 

  76. F. Kurusu, S. Koide, I. Karube, and M. Gotoh, Electrocatalytic activity of bamboo-structured carbon nanotubes paste electrode toward hydrogen peroxide. Analytical Letters, 39 (2006): 903–911.

    Article  CAS  Google Scholar 

  77. R. Antiochia and I. Lavagnini, Alcohol biosensor based on the immobilization of meldola mlue and alcohol dehydrogenase into a carbon nanotube paste electrode. Analytical Letters, 39 (2006): 1643–1655.

    Article  CAS  Google Scholar 

  78. X.-J. Tian, J.-F. Song, X.-J. Luan, Y.-Y. Wang, and Q. Z. Shi, Selective detection of dopamine in the presence of ascorbic acid by use of glassycarbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin. Analytical and Bioanalytical Chemistry, 386 (2006): 2081–2094.

    Article  CAS  Google Scholar 

  79. X.-Q. Lin, J.-B. He, and Z. G. Zha, Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry. Sensors & Actuators B, Chemical; 119 (2006): 608–614.

    Article  CAS  Google Scholar 

  80. G. L. Luque, N. F. Ferreyra, and G. A. Rivas, Glucose biosensor based on the use of a carbon nanotube paste electrode modified with metallic particles. Microchimica Acta, 152 (2006): 277–283.

    Article  CAS  Google Scholar 

  81. S.-Y. Ly, Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry, 68 (2006): 227–231.

    Article  CAS  Google Scholar 

  82. R. T. Kachoosangi, G. G. Wildgoose, and R. G. Compton, Room temperature ionic liquid carbon nanotube paste electrodes: Overcoming large capacitive currents using rotating disk electrodes. Electroanalysis, 19(2007): 1483–1489.

    Google Scholar 

  83. L. Zheng and J. F. Song, Voltammetric behavior of urapidil and its determination at multi-wall carbon nanotube paste electrode. Talanta, 73 (2007): 943–947.

    Article  CAS  Google Scholar 

  84. J.-Y. Qu, X.-Q. Zou, B.-F. Liu, and S.-J. Dong, Assembly of polyoxometalates on carbon nanotubes paste electrode and its catalytic behaviors. Analytical Chimica Acta, 599 (2007): 51–57.

    Article  CAS  Google Scholar 

  85. S.-Y. Ly, Y.-S. Jung, S.-K. Kim, and H.-K. Lee, Trace analysis of lead and copper ions in fish tissue using paste electrodes. Analytical Letters, 40 (2007): 2683–2692.

    Article  CAS  Google Scholar 

  86. S. Shahrokhian and M. Amiri, Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Microchimica Acta, 157 (2007): 149–158.

    Article  CAS  Google Scholar 

  87. R. Antiochia and L. Gorton, Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages. Biosensors & Bioelectronics, 22 (2007): 2611–2617.

    Article  CAS  Google Scholar 

  88. J.-H. Chen, Z.-Y. Lin, and G.-N. Chen, An electrochemiluminescent sensor for glucose employing a modified carbon nanotube paste electrode. Analytical and Bioanalytical Chemistry, 388 (2007): 399–407.

    Article  CAS  Google Scholar 

  89. A. Abbaspour and R. Mirzajani, Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode. Journal of Pharmaceutical and Biomedical Analysis, 44 (2007): 41–48.

    Article  CAS  Google Scholar 

  90. L.-B. Nie, H.-S. Gu, Q.-G. He, J.-R. Chen, and Y.-Q. Miao, Enhanced electrochemical detection of DNA hybridization with carbon nanotube modified paste electrode. Journal of Nanoscience and Nanotechnology, 7 (2007): 560–564.

    Article  CAS  Google Scholar 

  91. Y.-T. Chen, Z.-N. Lin, J.-H. Chen, J.-J. Sun, L. Zhang, and G.-N. Chen, New capillary electrophoresis-electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)3(2+)/multi-wall-carbonnanotube paste electrode. Journal of Chromatography A, 1172 (2007): 84–91.

    Article  CAS  Google Scholar 

  92. R. T. Kachoosangi, L. Xiao, G. G. Wildgoose, F. Marken, P. C. B. Page, and R. G. Compton, A new method of studying ion transfer at liquid liquid phase boundaries using a carbon nanotube paste electrode with a redox active binder. Journal of Physical Chemistry C, 111 (2007): 18353–18360.

    Article  CAS  Google Scholar 

  93. S.-Y. Ly, C.-H. Lee, and Y.-S. Jung, Measuring oxytetracycline using a simple prepared DNA immobilized on a carbon nanotube paste electrode in fish tissue Journal of the Korean Chemical Society, 51 (2007): 412–417.

    CAS  Google Scholar 

  94. S.-Y. Ly, Diagnosis of copper ions in vascular tracts using a fluorine-doped carbon nanotube sensor. Talanta, 74 (2008): 1635–1641.

    Article  CAS  Google Scholar 

  95. S. Shahrokhian, Z. Kamalzadeh, A. Bezaatpour, and D. M. Boghaei, Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes. Sensors & Actuators B, Chemical; 133 (2008): 599–606.

    Article  CAS  Google Scholar 

  96. J.-N. Xie, S.-Y. Wang, L. Aryasomayajula, and V.-K. Varadan, Effect of nano-materials in platinum-decorated carbon nanotube pastebased electrodes for amperometric glucose detection. Journal of Material Research, 23 (2008): 1457–1465.

    Article  CAS  Google Scholar 

  97. H. Ibrahim, Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I) ion. Analytica Chimica Acta, 545 (2005): 158–165.

    Article  CAS  Google Scholar 

  98. R. Metelka, S. Slavíková, K. Vytřas, Determination of arsenate and organic arsenic via potentiometric titration of its heteropolyanions. Talanta, 58 (2002): 147–151.

    Article  CAS  Google Scholar 

  99. J. Konvalina, K. Vytřas, Reductive Determination of gold at carbon paste electrode using constantcurrent stripping analysis. Chemické Listy, 95 (2001): 505–508.

    CAS  Google Scholar 

  100. I. Švancara, K. Vytřas, Determination of iodide in potassium iodide dosage tablets using cathodic stripping voltammetry with a carbon paste electrode. Scientific Papers of the University of Pardubice, Series A; 7 (2001): 5–15.

    Google Scholar 

  101. I. Švancara, B. Ogorevc, M. Novič, and K. Vytřas, Simple and rapid determination of iodide in table salts containing anticaking agents using stripping potentio-metry with selective sensing at a carbon paste electrode. Analytical and Bioanalytical Chemistry, 372 (2002): 795–800.

    Article  CAS  Google Scholar 

  102. I. Švancara, K. Vytřas, and K. Kalcher, Half-decade of carbon paste electrodes in fact and interesting glosses. Atypical reminiscence of an electrochemical and electroanalytical jubilee (in Czech); in Modern Electrochemical Methods — XXVIII, Book of Abstracts. eds. J. Barek and T. Navrátil. (Prague: Czech Chemical Society, 2008), pp. 114–115.

    Google Scholar 

  103. R. J. Mascarenhas, A. K. Satpati, S. Yellappa, B. S. Sherigara, and A. K. Bopiah, Wax-impregnated carbon paste electrode modified with mercuric oxalate for the simultaneous determination of heavy metal ions in medicinal plants and ayurvedic tablets. Analytical Sciences (Japan), 22 (2006): 871–875.

    Article  CAS  Google Scholar 

  104. R. M. Takeuchi, A. L. Santos, P. M. Padilha, and N. R. Stradiotto, Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organo-functionalized silica. Talanta, 71 (2007): 771–777.

    Article  CAS  Google Scholar 

  105. R. M. Takeuchi, A. L. Santos, P. M. Padilha, and N. R. Stradiotto, A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica for differential pulse adsorptive stripping analysis of nickel(II) in ethanol fuel. Analytica Chimica Acta, 584 (2007): 295–301.

    Article  CAS  Google Scholar 

  106. W. Yantasee, Y.-H. Lin, G. E. Fryxell, and Z.-M. Wang, Carbon paste electrode modified with carbamoylphosphonic acid functionalized mesoporous silica: A new mercury-free sensor for uranium detection. Electroanalysis, 16 (2004) 870–873.

    Article  CAS  Google Scholar 

  107. H.-L. Liu, Chemically modified carbon paste sensor for aluminium(III) and its application. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 31 (2003): 1511–1513.

    CAS  Google Scholar 

  108. B. Blankert, O. Domínguez, W. El Ayyas, J. Arcos, and J.-M. Kauffmann, Horseradish peroxidase electrode for the analysis of clozapine. Analytical Letters, 37 (2004): 903–913.

    Article  CAS  Google Scholar 

  109. T. K. Malongo, S. Patris, P. Macours, F. Cotton, J. Nsangu, and J.-M. Kauffmann, Highly sensitive determination of iodide by ion chromatography with ampero-metric detection at a silver-based carbon paste electrode. Talanta, 76 (2008): 540–547.

    Article  CAS  Google Scholar 

  110. K. Grennan, A. J. Killard, and M. R. Smyth, Physical characterizations of a screen-printed electrode for use in an amperometric biosensor system. Electroanalysis, 13 (2001): 745–750.

    Article  CAS  Google Scholar 

  111. G. Cui, J.-H. Yoo, B.-W. Woo, S.-S. Kim, G.-S. Cha, and H. Nam, Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip. Talanta, 54 (2001): 1105–1111.

    Article  CAS  Google Scholar 

  112. P. Fanjul Bolado, D. Hernández Santos, P. J. Lamas Ardisana, A. Martin Pernia, A. Costa García, Electro-chemical characterization of screen-printed and conventional carbon paste electrodes. Electrochimica Acta, 53 (2008): 3635–3642.

    Article  CAS  Google Scholar 

  113. I. Švancara, R. Metelka, M. Stibůrková, J. Seidlová, G. Jansová, K. Vytřas, and B. Pihlar, Carbon paste electrodes and screen-printed sensors plated with mercury- and bismuth films in stripping voltammetry of heavy metals. Scientific Papers of the University of Pardubice, Series A; 8 (2002) 19–33.

    Google Scholar 

  114. D. Wei and A. Ivaska, Applications of ionic liquids in electrochemical sensors. A Review. Analytica Chimica Acta, 607 (2008): 126–135.

    Article  CAS  Google Scholar 

  115. H.-T. Liu, P. He, Z.-Y. Li, C.-N. Sun, L.-H. Shi, Y. Liu, G.-Y. Zhu, and J.-H. Li, An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochemistry Communations, 7 (2005): 1357–1363.

    Article  CAS  Google Scholar 

  116. G. Shul, J. Sirieix Plenet, L. Gaillon, and M. Opallo, Ion transfer at carbon paste electrode based on ionic liquid. Electrochemistry Communications, 8 (2006): 1111–1114.

    Article  CAS  Google Scholar 

  117. N. Maleki, A. Safavi, and F. Tajabadi, High-performance carbon composite electrode based on an ionic liquid as a binder. Analytical Chemistry, 78 (2006): 3820–3826.

    Article  CAS  Google Scholar 

  118. A. Safavi, N. Maleki, O. Moradlou, and F. Tajabadi, Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Analytical Biochemistry, 359 (2006): 224–229.

    Article  CAS  Google Scholar 

  119. A. Safavi, N. Maleki, F. Honarasa, F. Tajabadi, and F. Sedaghatpour, Ionic liquids modify the performance of carbon based potentiometric sensors. Electroanalysis, 19 (2007): 582–586.

    Article  CAS  Google Scholar 

  120. W. Sun, M.-X. Yang, R.-F. Gao, and K. Jiao, Electrochemical determination of ascorbic acid in room temperature ionic liquid BPPF6 modified carbon paste electrode. Electroanalysis, 19 (2007): 1597–1602.

    Article  CAS  Google Scholar 

  121. N. Maleki, A. Safavi, and F. Tajabadi, Investigation of the role of ionic liquids in imparting electrocatalytic behavior to carbon paste electrode. Electroanalysis, 19 (2007): 2247–2250.

    Article  CAS  Google Scholar 

  122. J.-B. Zheng, Y. Zhang, and P.-P. Yang, An ionic liquid-type carbon paste electrode for electrochemical investi-gation and determination of calcium dobesilate. Talanta, 73 (2007): 920–925.

    Article  CAS  Google Scholar 

  123. A. Safavi, N. Maleki, and F. Tajabadi, Highly stable electrochemical oxidation of phenols at carbon ionic liquid electrode. Analyst (UK), 132 (2007): 54–58.

    Article  CAS  Google Scholar 

  124. J. Li, M.-H. Huang, X.-Q. Liu, H. Wei, Y.-H. Xu, G.-B. Xu, and E.-K. Wang, Enhanced electrochemiluminescence sensor from tris(2,2′-bipyridyl)Ru(II) incorporated into MCM-41 and ionic liquid-based carbon paste electrode. Analyst (UK), 132 (2007): 687–691.

    Article  CAS  Google Scholar 

  125. S.-F. Wang, H.-Y. Xiong, and Q.-X. Zeng, Design of carbon paste biosensors based on the mixture of ionic liquid and paraffin oil as a binder for high performance and stabilization. Electrochemistry Communications, 9 (2007): 807–812.

    Article  CAS  Google Scholar 

  126. W. Sun, D.-D. Wang, R.-F. Gao, and K. Jiao, Direct electrochemistry and electro-catalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochemistry Communications, 9 (2007): 1159–1164.

    Article  CAS  Google Scholar 

  127. Y. Zhang, J.-B. Zheng, Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic-liquid modified-, and the bare carbon paste electrode. Electrochimica Acta, 52 (2007): 7210–7216.

    Article  CAS  Google Scholar 

  128. W. Sun, R.-F. Gao, and K. Jiao, Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 Modified Carbon Paste Electrode. Journal of Physical Chemistry B, 111 (2007): 4560–4567.

    Article  CAS  Google Scholar 

  129. W. Sun, M.-X. Yang, and K. Jiao, Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Analytical and Bioanalytical Chemistry, 389 (2007): 1283–1291.

    Article  CAS  Google Scholar 

  130. Y. Zhang and J.-B. Zheng, An ionic liquid bulk-modified carbon paste electrode and its electrocatalytic activity toward p-aminophenol. Chinese Journal of Chemistry (Shanghai), 25 (2007): 1652–1657.

    CAS  Google Scholar 

  131. W. Sun, R.-F. Gao, D.-D. Wang, and K. Jiao, Direct electrochemistry of hemoglobin at room temperature ionic liquid [BMIM]PF6 modified carbon paste electrode. Wuli Huaxue Xuebao (Chinese Acta Physica Chimica), 23 (2007): 1247–1251.

    CAS  Google Scholar 

  132. X.-Z. Zhang, K. Jiao, and X.-L. Wang, Paste electrode based on short single-walled carbon nanotubes and room temperature ionic liquid: preparation, characterization and application in DNA detection. Electroanalysis, 20 (2008): 1361–1366.

    Article  CAS  Google Scholar 

  133. M. Musameh and J. Wang, Sensitive and stable amperometric measurements at ionic liquidcarbon paste microelectrodes. Anal. Chim. Acta, 606 (2008): 45–49.

    Article  CAS  Google Scholar 

  134. M. M. Musameh, R. T. Kachoosangi, and R. G. Compton, Enhanced stability and sensitivity of ionic liquid-carbon paste electrodes at elevated temperatures. Analyst (UK), 133 (2008): 133–138.

    Article  CAS  Google Scholar 

  135. W. Sun, Y.-Z. Li, M.-X. Yang, S.-F. Liu, and K. Jiao, Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode. Electrochemistry Communications, 10 (2008): 298–301.

    Article  CAS  Google Scholar 

  136. G. Shang, D. Xiao, H.-F. Zhang, and J.-B. Zheng, Electrochemical behavior and differential pulse voltammetric determination of Paracetamol at a carbon ionic liquid electrode. Analytical and Bioanalytical Chemistry, 391 (2008): 1049–1055.

    Article  CAS  Google Scholar 

  137. S.-S. Fan, F. Xiao, L. Liu, F.-Q. Zhao, and B.-Z. Zeng, Sensitive voltammetric response of methylparathion on single-walled carbon nanotube paste coated electrodes using ionic liquid as binder. Sensors & Actuators B, Chemical; 132 (2008): 34–39.

    Article  CAS  Google Scholar 

  138. M. M. Musameh, R. T. Kachoosangi, L. Xiao, A. Russell, and R. G. Compton, Ionic liquidcarbon composite glucose biosensor. Biosensors & Bioelectronics, 24 (2008): 87–92.

    Article  CAS  Google Scholar 

  139. W. Sun, Q. Jiang, M.-X. Yang, and K. Jiao, Electrochemical behaviors of hydro-quinone on a carbon paste electrode with ionic liquid as binder. Bulletin of the Korean Chemical Society, 29 (2008): 915–920.

    Google Scholar 

  140. H. Zhang, G.-P. Cao, Y.-S. Yang, and Z.-N. Gu, The capacitive performance of an ultralong (aligned) carbon nanotube electrode in an ionic liquid at 60oC. Carbon, 46 (2008): 30–34.

    Article  CAS  Google Scholar 

  141. I. Švancara, R. Metelka, and K. Vytřas, K., Piston-driven carbon paste electrode holders for electrochemical measurements; in Sensing in Electroanalysis. eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2005), pp. 7–18.

    Google Scholar 

  142. J. Oni, P. Westbroek, and T. Nyokong, Construction and characterization of carbon paste ultramicro-electrodes. Electrochemistry Communications, 3 (2001): 524–528.

    Article  CAS  Google Scholar 

  143. L. Baldrianová, I. Švancara, and S. Sotiropoulos, Anodic stripping voltammetry at a new type of disposable bismuth-plated carbon paste minielectrodes. Analytica Chimica Acta, 599 (2007): 249–255.

    Article  CAS  Google Scholar 

  144. J. Zima, H. Dejmková, and J. Barek, HPLC determination of naphthalene amino derivatives using electrochemical detection at carbon paste electrodes. Electroanalysis, 19 (2007): 185–190.

    Article  CAS  Google Scholar 

  145. I. Švancara, P. Kotzian, M. Bartoš, and K. Vytřas, Groove electrodes: A new alternative of using carbon paste in electroanalysis. Electrochemistry Communications, 7 (2005): 657–662.

    Article  CAS  Google Scholar 

  146. I. Švancara, P. Kotzian, R. Metelka, M. Bartoš, P. Foret, and K. Vytřas, Plastic bars with carbon paste: A new type of the working electrode in electroanalysis (in Czech); in Monitoring of Environmental Pollutants — IV, eds. K. Vytřas, J. Kellner, and J. Fischer. (Pardubice: University of Pardubice, 2002), pp. 145–158.

    Google Scholar 

  147. R. Metelka, M. Žeravík, and K. Vytřas, Groove electrodes filled with carbon paste in flow injection analysis (in Czech); in Monitoring of Environmental Pollutants — X, eds. K. Vytřas, J. Kellner, and J. Fischer. (Pardubice: University Pardubice, 2008), pp. 153–158.

    Google Scholar 

  148. G. U. Flechsig, O. Korbout, S. B. Hočevar, S. Thongngamdee, B. Ogorevc, P. Gründler, and J. Wang, Electrically heated bismuth-film electrode for voltammetric stripping measurements of trace metals. Electroanalysis, 14 (2002): 192–196.

    Article  CAS  Google Scholar 

  149. D.C. Dunwoody, M. Unlu, A. K. H.. Wolf, W. L. Gellett, and J. Leddy, Magnet incorporated carbon electrodes: Methods for construction and demonstration of increased electrochemical flux. Electroanalysis, 17 (2005): 1487–1494.

    Article  CAS  Google Scholar 

  150. B.-Y. Yang, J.-Y. Mo, and R. Lai, Determination of environmental nitrophenols by dual-electrode and dual-channel electrochemical detection in capillary electrophoresis with a carbon paste electrode. Gaodeng Xuexiao Huaxue Xuebao (Chemical Journal of Chinese Universities), 26 (2005): 227–230.

    CAS  Google Scholar 

  151. Gy. Svehla: Vogel’s Qualitative Inorganic Analysis, 7th Ed., revised and extended. (Singapore: Longman Publi-shing, 1996).

    Google Scholar 

  152. Y.-N. Zeng, N. Zheng, P. G. Osborne, Y.-Z. Li, W.-B. W.-B. Chang, and Z.-M. Wang, Preparation and cyclic voltammetry characterization of Cu(I)-dipyridyl imprinted polymer. Chinese Chemistry Letters, 13 (2002): 317–320.

    CAS  Google Scholar 

  153. M. H. Mashhadizadeh, A. Mostafavi, H. Allah Abadi, and I. Sheikh-shoai, New Schiff base modified carbon paste and coated wire PVC membrane for silver ion. Sensors & Actuators B, Chemical; 113 (2006): 930–936.

    Article  CAS  Google Scholar 

  154. L.-D. Li, W.-J. Li, C.-Q. Sun, and L.-S. Li, Fabrication of carbon paste electrode containing 1:12 phospho-molybdic anions encapsulated in modified mesoporous molecular sieve MCM-41 and its electrochemistry. Electroanalysis, 14 (2002): 368–375.

    Article  Google Scholar 

  155. S.-X. Liu, C.-M. Wang, D.-H. Li, Z.-M. Su, E.-B. Wang, N.-H. Hu, and H.-Q. Jia, Synthesis, structure and properties of a novel supramolecular compound. Acta Chimica Sinica (Shanghai), 62 (2004): 1305–1310.

    CAS  Google Scholar 

  156. Z.-G. Han, Y.-L. Zhao, J. Peng, Q. Liu, and E.-B. Wang, Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode. Electrochimica Acta, 51 (2005): 218–224.

    Article  CAS  Google Scholar 

  157. L.-Y. Duan, F.-C. Liu, X.-L. Wang, E.-B. Wang, C. Qin, Y.-G. Li, X.-L. Wang, and C.-W. Hu, A new 3-D cadmium molybdenum phosphate with intersecting tunnels: hydro-thermal synthesis, structure and electrochemical properties of the [C3H12N2]4[CdMo12O24 (HPO4)6(PO4)2(OH)6][(Cd(H2O)2]x3H2O compound. Journal of Molecular Structure, 705 (2004):15–20.

    Article  CAS  Google Scholar 

  158. B. Keita, P. de Oliveira, L. Nadjo, and U. Kortz, The ball-shaped heteropolytungstates [{Sn(CH3) (2)(H2O)} (24){Sn(CH3)(2)}(12)-(A-XW9O34) (12)](36-) (X = P, As): Stability, redox and catalytic properties in aqueous media. Chemistry — A European Journal (Wiley), 13 (2007): 5480–5491.

    Article  CAS  Google Scholar 

  159. B.-X. Dong, J. Peng, A.-X. Tian, J.-Q. Sha, L. Li, and H.-S. Liu, Two new inorganic-organic hybrid single pendant hexadecavanadate derivatives with bifunctional electrocatalytic activities. Electrochimica Acta, 52 (2007): 3804–3812.

    Article  CAS  Google Scholar 

  160. X.-Y. Zhao, D.-D. Liang, S.-X. Liu, C.-Y. Sun, R.-G. Cao, C.-Y. Gao, Y.-H. Ren, and Z.-M. Su, Two Dawson-templated 3-D metalorganic frameworks based on oxalate-bridged binuclear Co(II)/Ni(II) SBUs and bpy-linkers. Inorganic Chemistry, 47 (2008): 133–138.

    Google Scholar 

  161. E. S. Ribeiro, Y. Gushikem, J. C. Biazzotto, and O. A. Serra, Electrochemical properties and dissolved oxygen reduction study on FeIII-tetra(oureaphenyl) porphyrinosilica matrix surface, Journal of Porphyrins & Phthalocyanines, 6 (2002): 527–532.

    Article  CAS  Google Scholar 

  162. C. A. Pessoa, Y. Gushikem, and S. Nakagaki, Cobalt porphyrin immobilized on a niobium(V) oxide grafted-silica gel surface: Study of the catalytic oxidation of hydrazine. Electroanalysis, 14 (2002): 1072–1076.

    Article  CAS  Google Scholar 

  163. C.-Y. Li, Y. Chen, C.-F. Wang, H.-B. Li, and Y.-Y. Chen, Electrocatalytic oxidation of H2O2 at a carbon paste electrode modified with a Ni(II)-calix[4]arene complex and its application. Wuhan University, Journal of Natural Sciences; 8 (2003): 857–860.

    Article  CAS  Google Scholar 

  164. D. Munteanu, D. Dicu, I. C. Popescu, and L. Gorton, NADH oxidation using carbo-naceous electrodes modified with dibenzo-dithia-diazapentacene. Electroanalysis, 15 (2003): 383–391.

    Article  CAS  Google Scholar 

  165. E. S. Gil and L. T. Kubota, Electrochemical properties of Doyle catalyst immobilized on carbon paste in the presence of DNA. Bioelectrochemistry, 51 (2001): 145–149.

    Article  Google Scholar 

  166. V. Parra, T. del Cano, M. L. Rodríguez Mendez, J. A. de Saja, and R. F. Aroca, Electrochemical characterization of two perylenetetracarboxylic diimides: Langmuir-Blodgett films and carbon paste electrodes. Chemistry of Materials, 16 (2004): 358–364.

    Article  CAS  Google Scholar 

  167. C.-X. Lei, S.-Q. Hu, G.-L. Shen, and R.-Q. Yu, Immobilization of horseradish peroxidase to a nano-Au monolayer / chitosan- modified carbon paste electrode for the detection of hydrogen peroxide. Talanta, 59 (2003): 981–988.

    Article  CAS  Google Scholar 

  168. J. Li, L.-T. Xiao, X.-M. Liu, G.-M. Zeng, G.-H. Huang, G.-.L. Shen, and R.-Q. Yu, Amperometric biosensor with HRP immobilized on a sandwiched nano-Au polymerized film and ferrocene mediator. Analytical and Bioanalytical Chemistry, 376 (2003): 902–907.

    Article  CAS  Google Scholar 

  169. H. Remita, P. F. Siril, I. M. Mbomekalle, B. Keita, and L. Nadjo, Activity evaluation of carbon paste electrodes loaded with Pt-nanoparticles prepared in different radiolytic conditions. Journal of Solid State Electrochemistry, 10 (2006): 506–511.

    Article  CAS  Google Scholar 

  170. J.-Z. Xu, J.-J. Zhu, H. Wang, and H.-Y. Chen, Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Analytical Letters, 36 (2003): 2723–2733.

    Article  CAS  Google Scholar 

  171. D. R. do Carmo, L. L. Paim, N. L. Dias, and N. R. Stradiotto, Preparation, characte-rization and application of a nanostructured composite: Octakis-(cyanopropyldimethyl-siloxy)octa-silsesquioxane. Applied Surface Science, 253 (2007): 3683–3689.

    Article  CAS  Google Scholar 

  172. D.-P. Tang, R. Yuan, and Y.-Q. Chai, Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. Journal of Physical Chemistry B, 110 (2006): 11640–11646.

    Article  CAS  Google Scholar 

  173. W. Sun, D.-D. Wang, J.-H. Zhong, and K. Jiao, Electrocatalytic activity of hemoglobin in sodium alginate / SiO2 nanoparticle / ionic liquid BMIM-PF6 composite film. Journal of Solid State Electrochemistry, 12 (2008): 655–661.

    Article  CAS  Google Scholar 

  174. X.-L, Wang., Z.-H. Kang, E.-B. Wang, C.-W. Hu, Preparation of chemically bulk-modified electrode based on hybrid silicomolybdate nanoparticles for the detection of nitrite. Material Letters, 56 (2002): 393–396.

    CAS  Google Scholar 

  175. X.-L. Wang., Z.-H. Kang, E.-B. Wang, C.-W. Hu, Inorganic-organic hybrid 18-molybdodiphosphate nanoparticles bulk-modified carbon paste electrode and its electro-catalytic properties. Chinese Journal of Chemistry (Shanghai), 20 (2002): 777–783.

    CAS  Google Scholar 

  176. X.-L. Wang., Z.-H. Kang, Y. Lan, and E.-B. Wang, Molybdo-vanado-phosphate tetraethyl-ammonium nanoparticles bulk-modified carbon paste electrode and its electrocatalysis toward the reduction of hydrogen peroxide. Fenxi Huaxue (Chinese Journal of Analytical Chemistry, 31 (2003): 941–944.

    CAS  Google Scholar 

  177. L. Wang, M. Jiang, E.-B. Wang, S.-Y. Lian, L. Xu, and Z. Li, Synthesis and characte-rization of nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo-36)n. Material Letters, 58 (2004): 683–687.

    Article  CAS  Google Scholar 

  178. X.-L. Wang, H.-Y. Zhao, and Y.-F. Wang, Preparation, electrochemical property and application in bulk-modified electrode of Dawson-type phosphomolybdate-doped polypyrrole composite nanoparticles. Gaodeng Xuexiao Huaxue Xuebao (Chemical Research in Chinese Universities), 22 (2006): 556–559.

    Article  CAS  Google Scholar 

  179. Z.-G. Han, Y.-L. Zhao, J. Peng, Q. Liu, and E.-B. Wang, Inorganic-organic hybrid polyoxo-metalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode. Electrochimica Acta, 51 (2005): 218–224.

    Article  CAS  Google Scholar 

  180. A. Curulli, F. Valentini, S. Orlanducci, M. L. Terranova, C. Paoletti, G. Palleschi, Electrosynthesis of non conventional-polymer nanotubules: A new nanostructured material for analytical applications. Sensors & Actuators B, Chemical; 100 (2004) 65–71.

    Article  CAS  Google Scholar 

  181. S.-Y. Zhu, L.-S. Fan, X.-Q. Liu, L-H. Shi, H.-J. Li, S. Han, and G.-B. Xu, Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode. Electrochemistry Communications, 10 (2008): 695–698.

    Article  CAS  Google Scholar 

  182. M. B. González García, and A. Costa García, Adsorptive stripping voltammetric behavior of colloidal gold and immunogold on a carbon paste electrode. Bioelectrochemistry & Bioenergetics, 38 (1995): 389–395.

    Article  Google Scholar 

  183. D. Hernández Santos, M. B. González García, and A. Costa Garcia, Metalnano-particles based electroanalysis. A Review. Electroanalysis, 14 (2002): 1225–1235.

    Article  Google Scholar 

  184. S.-Q. Liu and H.-X. Ju, Reagentless glucose biosensor based on colloidal gold modified carbon paste electrode. Biosensors & Bioelectronics, 19 (2003): 177–183.

    Article  CAS  Google Scholar 

  185. S.-Q. Liu and H.-X. Ju, Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles. Electroanalysis, 15 (2003): 1488–1493.

    Article  CAS  Google Scholar 

  186. T. Grygar, F. Marken, U. Schröder, and F. Scholz, Electrochemical analysis of solids. A Review. Collection of Czechoslovak Chemical Communications, 67 (2002): 163–208.

    Article  CAS  Google Scholar 

  187. V. Vivier, A. Regis, G. Sagon, J. Y. Nedelec, L. T. Yu, and C. Cachet Vivier, Cyclic voltammetry study of bismuth oxide powder by means of a cavity microelectrode coupled with Raman microspectrometry. Electrochimica Acta, 46 (2001): 907–914.

    Article  CAS  Google Scholar 

  188. V. B. Fetisov, G. A. Kozhina, A. N. Ermakov, A. V. Fetisov, and E. G. Miroshnikova, Electrochemical dissolution of Mn3O4 in acid solutions. Journal of Solid State Electrochemistry, 11 (2007): 1205–1210.

    Article  CAS  Google Scholar 

  189. G. Cepria, J. J. Cepria, J. Ramajo, Fast and simple electroanalytical identification of iron oxides in geological samples. Microchimica Acta, 144 (2004): 139–145.

    Article  CAS  Google Scholar 

  190. K. E. Jaya, S. Berckman, V. Yegnaraman, and P. N. Mohandes, Electrochemical investigation of the rusting reaction of ilmenite using CVstudies. Hydrometallurgy, 65 (2002): 217–225.

    Article  Google Scholar 

  191. E. Barrado, F. Prieto, F. J. Garay, J. Medina, and M. Vega, Characterization of nickel-bearing ferrites obtained as by-products of hydrochemical wastewater purification processes. Electrochemica Acta 47 (2002) 1959–1965.

    Article  CAS  Google Scholar 

  192. E. Barrado, F. Prieto, J. Medina, and R. Pardo, Purification of cadmium waste water: Characterization and electrochemical behaviour of ferrites bearing cadmium(II). Quimica Analytica, 20 (2001): 47–53.

    CAS  Google Scholar 

  193. J. L. Nava, M. T. Oropeza, and I. González, Oxidation of mineral species as a function of the anodic potential of zinc sulphide concentrate in sulfuric acid. Journal of Electro-analytical Chemistry Society, Section B; 151 (2004): B387–B393.

    CAS  Google Scholar 

  194. S.-Y. Shi, Z.-H. Fang, and J.-R. Ni, Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41 (2006): 438–446.

    Article  CAS  Google Scholar 

  195. S.-Y. Shi, Z.-H. Fang, and J.-R. Ni, Electrochemistry of marmatite-containing carbon paste electrode in the presence of bacterial strains. Bioelectrochemistry, 68 (2006): 113–118.

    Article  CAS  Google Scholar 

  196. J. L. Nava, M. T. Oropeza, and I. González, Electrochemical characterisation of sulfur species formed during anodic dissolution of galena concentrate in perchlorate medium. Electrochimica Acta, 47 (2002): 1513–1525.

    Article  CAS  Google Scholar 

  197. J. L. Nava and I. González, The role of the carbon paste electrodes in the electro-chemical study of metallic minerals. Quimica Nova, 28 (2005): 901–909.

    CAS  Google Scholar 

  198. D. Nava and I. González, Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid. Electrochimica Acta, 51 (2005): 5295–5303.

    Article  CAS  Google Scholar 

  199. E. A. Holley, A. J. McQuillan, D. Craw, J. P. Kim, and S. G. Sander, Mercury mobilization by oxidative dissolution of alpha cinnabar and beta-cinnabar. Chemical Geology, 240 (2007): 313–325.

    Article  CAS  Google Scholar 

  200. C. M. V. B. Almeida and B. F. Giannetti, Electrochemical study of arsenopyrite weathering. Physical Chemistry / Chemical Physics, 5 (2003): 604–610.

    Article  CAS  Google Scholar 

  201. G. Cepria, N. Alexa, E. Cordos, and J. R. Castillo, Electrochemical screening procedure for arsenic contaminated soils. Talanta, 66 (2005): 875–881.

    Article  CAS  Google Scholar 

  202. I. Galfi, J. Aromaa, and O. Forsen, Laboratory tool for electrochemical study of sulphide minerals. Physicochemical Problems in Mineral Processing, 41 (2007): 301–312.

    CAS  Google Scholar 

  203. C. M. V. B. Almeida and B. F. Giannetti, A new and practical carbon paste electrode for insoluble and ground samples. Electrochemistry Communications, 4 (2002): 985–988.

    Article  CAS  Google Scholar 

  204. G. Cepria, L. Irigoyen, and J. R. Castillo, A microscale procedure to test the metal sorption properties of biomass sorbents: A time and reagents saving alternative to conventional methods. Microchimica Acta, 154 (2006): 287–295.

    Article  CAS  Google Scholar 

  205. D. R. do Carmo, R. M. da Silva, and Stradiotto N. R., Electrochemical study of Fe[Fe(CN)5NO] in a graphite paste electrode. Ecletica Quimica (Brazil), 27 (2002): 197–210.

    Google Scholar 

  206. M. Shamsipur, A. Salimi, S. M. Golabi, H. Sharghi, and M. F. Mousayi, Electro-chemical properties of modified carbon paste electrodes containing some amino derivatives of 9,10-anthraquinone. Journal of Solid State Electrochemistry, 5 (2001): 68–72.

    Article  CAS  Google Scholar 

  207. A. Vlasa, S. Varvara, and L. M. Muresan, Electrochemical investigation of the influence of two thiadiazole deriva-tives on the patina of an archaeological bronze artefact using a carbon paste electrode. Studies of University Babes-Bolyai, Series Chemical (Cluj-Napoca); 52 (2007): 63–71.

    CAS  Google Scholar 

  208. G.-Y. Shi, K. Yamamoto, T.-.S. Zhou, F. Xu, T. Kato, J.-Y. Jin, and L.-T. Jin, On-line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system. Electrophoresis, 24 (2003): 3266–3272.

    Article  CAS  Google Scholar 

  209. S.-Y. Ly, Real-time voltammetric assay of cadmium ions in plant tissue and fish brain core. Bulletin of the Korean Chemistry Society, 27 (2006): 1613–1617.

    CAS  Google Scholar 

  210. S. Y. Ly, Diagnosis of Cu(II) ions in vascular tracts by a F-doped carbon nanotube sensor. Talanta, 74 (2008): 1635–1641.

    Article  CAS  Google Scholar 

  211. S.-Y. Ly, Y.-S. Jung, C.-H. Lee, and B.-W. Lee, Administering pesticide assays with the aid of invivo implanted biosensors. Australian Journal of Chemistry, 61 (2008): 826–832.

    Article  CAS  Google Scholar 

  212. L. Lvova, S.-S. Kim, A. Legin, Y. Vlasov, J.-S. Yang, G.-S. Cha, and H. Nam, Solid-state electronic tongue and its application for beverage analysis. Analytica Chimica Acta, 468 (2002): 303–314.

    Article  CAS  Google Scholar 

  213. A. Arrieta, M. L. Rodríguez Mendéz, and J. A. de Saja, Langmuir-Blodgett film and carbon paste electrode based on phthalocyanines as sensing units for taste. Sensors & Actuators B, Chemical; 95 (2003): 357–365.

    Article  CAS  Google Scholar 

  214. V. Parra, A. A. Arrieta, J. A. Fernández Escudero, M. Iníguez, J. A. de Saja, and M. M. L. Rodríguez, Monitoring of the ageing of red wines in oak barrels by an hybrid electronic tongue. Analytica Chimica Acta, 563 (2006): 229–237.

    Article  CAS  Google Scholar 

  215. M. L. Rodríguez Mendez, V. Parra, C. Apetrei, S. Villanuevam, M. Gay, N. Prieto, J. Martínez, and J. A. de Saja, Electronic tongue based on voltammetric electrodes modified with materials showing complementary electroactive properties. Characterization and Applications. Microchimica Acta, 163 (2008): 23–31.

    Article  CAS  Google Scholar 

  216. C. Apetrei, F. Gutieréz, M. L. Rodríguez Mendéz, and J. A. de Saja, Novel method based on carbon paste electrodes for the evaluation of bitterness in extra virgin olive oils. Sensors & Actuators B, Chemical, 121 (2007): 567–575.

    Article  CAS  Google Scholar 

  217. Y. Kureishi, H. Shiraishi, and H. Tamiaki, Self-aggregates of synthetic zinc chlorins as the photo-sensitizer on carbon paste electrodes for a novel solar cell. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 496 (2001): 13–20.

    Article  CAS  Google Scholar 

  218. M. Torimura, A. Miki, A. Wadano, K. Kano, and T. Ikeda, Electrochemical investigation of photoreduction catalyzed by cyanobacteria Synechococcus sp. PCC-7942) in exogenous quinones and photoelectrochemical oxidation of water. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 496 (2001): 21–28.

    Article  CAS  Google Scholar 

  219. T.-S. Oh, J.-H. Lee, S.-E. Lee, K.-W. Min, S.-K. Kang, J.-B. Yoo, C.-Y. Park, and J.-M. Kim, A field-emission display with an asymmetric electrostatic-quadrupole lens structure. Japanese Journal of Applied Physics, 44 (2005): 8692–8697.

    Article  CAS  Google Scholar 

  220. S. Křížková, P. Ryant, O. Kryštofová, V. Adam, V. Galiová, M. Beklová, P. Babula, J. Kaiser, K. Novotný, J. Novotný, M. Liška, R. Malina, J. Zehnálek, J. Hubálek, L. Havel, R. Kizek, Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions: Plants as bioindicators of environmental pollution. Sensors, 8 (2008): 445–463.

    Article  Google Scholar 

  221. A. Economou and P. R. Fielden, Mercury film electrodes: developments, trends and potentialities for electroanalysis (Review). Analyst (UK), 128 (2003): 205–212.

    CAS  Google Scholar 

  222. A. Walcarius, Zeolite-modified electrodes in electroanalytical chemistry. Analytica Chimica Acta, 384 (1999): 1–16.

    Article  CAS  Google Scholar 

  223. A. Walcarius, Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials. Electroanalysis, 13 (2001): 701–718.

    Article  CAS  Google Scholar 

  224. A. Walcarius, Electrochemical applications of silica-based organic-inorganic hybrid materials. Chem. Mater., 13 (2001): 3351–3372.

    Article  CAS  Google Scholar 

  225. A. Walcarius, Electroanalytical applications of microporous zeolites and mesoporous (organo) silicas: Recent trends. Electroanalysis, 20 (2008): 711–738.

    Article  CAS  Google Scholar 

  226. A. Walcarius, P. Mariaulle, and L. Lamberts, Zeolite-modified solid carbon paste electrodes. Journal of Solid State Electrochemistry, 7 (2003): 671–677.

    Article  CAS  Google Scholar 

  227. A. Walcarius, Zeolite-modified paraffin-impregnated graphite electrode. Journal of Solid State Electrochemistry, (2006): 469–478.

  228. S. Sayen, M. Etienne, J. Bessière, and A. Walcarius, Tuning the sensitivity of electrodes modified with an organic-inorganic hybrid by tailoring the structure of the nano-composite material. Electroanalysis, 14 (2002): 1521–1525.

    Article  CAS  Google Scholar 

  229. A. Walcarius, M. Etienne, S. Sayen, and B. Lebeau, Grafted silicas in electroanalysis: A Study on amorphous versus ordered mesoporous materials. Electroanalysis, 15 (2003): 414–421.

    Article  CAS  Google Scholar 

  230. M. Etienne, J. Bessière, and A. Walcarius, Voltammetric detection of copper(II) at a carbon paste electrode containing an organically modified silica. Sensors & Actuators B, Chemical; 76 (2001): 531–538.

    Article  Google Scholar 

  231. S. Sayen, C. Gérardin, L. Rodehuser, and A. Walcarius, Electrochemical detection of copper(II) at an electrode modified by a carnosine-silica hybrid material. Electro-analysis, 15 (2003): 422–430.

    CAS  Google Scholar 

  232. V. Ganesan and A. Walcarius, Surfactant templated sulfonic acid-functionalized silica microspheres as new efficient ion-exchangers and electrode modifiers. Langmuir, 20 (2004): 3632–3640.

    Article  CAS  Google Scholar 

  233. S. Goubert-Renaudin, M. Etienne, Y. Rousselin, F. Denat, B. Lebeau, and A. Walcarius, Cyclamfunctionalized silica-modified electrodes for selective determination of Cu(II). Electroanalysis, in press.

  234. M. Etienne, C. Delacôte, and A. Walcarius, Interest of mesoporous organic-inorganic hybrids in electroanalysis: Illustration for mercury binding to thiol-functionalized silica-based materials; in Progress in Electrochemistry Research, ed. M. Nuñéz. (Hauppauge (NY): Nova Science Publishers, 2005), pp.145–184.

    Google Scholar 

  235. W. Yantasee, C. Timchalk, G. E. Fryxell, B. P. Dockendorff, and Y. Lin, Automated portable analyzer for lead(II) based on sequential flow injection and nano-structured electrochemical sensors. Talanta, 68 (2005): 256–261.

    Article  CAS  Google Scholar 

  236. L.-D. Li, W.-J. Li, C.-Q Sun, and L.-S. Li, Fabrication of carbon paste electrode containing 1:12 phosphomolybdic anions encapsulated in modified mesoporous molecular sieve MCM-41 and its electrochemistry. Electroanalysis, 14 (2002): 368–375.

    Article  Google Scholar 

  237. C. Delacôte, J.-P. Bouillon, and A. Walcarius, Voltammetric responses of ferrocene-grafted mesoporous silica. Electrochimica Acta, 51 (2006): 6373–6383.

    Article  CAS  Google Scholar 

  238. M. Zendehdel, A. Babaei, and S. Alami, Intercalation of xylenol orange, morin, and calmagite into NaY-zeolite and their application in a dye / zeolite modified electrode. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59 (2007): 345–349.

    Article  CAS  Google Scholar 

  239. D. Gligor, L. M. Muresan, A. Dumitrum, and I. C. Popescu, Electrochemical behavior of carbon paste electrodes modified with methylene green immobilized on two different X-type zeolites. Journal of Applied Electrochemistry, 37 (2007): 261–267.

    Article  CAS  Google Scholar 

  240. J. Li, M.-H. Huang, X.-Q. Liu, H. Wei, Y.-H. Xu, G.-B. Xu, and E.-K. Wang, Enhanced electrochemiluminescence sensor from tris(2,2′-bipy)RuII incorporated into MCM-41 and ionic liquid-based carbon paste electrode. Analyst (UK), 132 (2007): 687–691.

    Article  CAS  Google Scholar 

  241. I. Švancara, K. Kalcher, and K. Vytřas, Solid Electrodes Plated with Metallic Films. Scientific Papers of the University of Pardubice, Series A; 3 (1997): 207–225.

    Google Scholar 

  242. I. Švancara, R. Pazdera, R. Metelka, E. Norkus, and K. Vytřas, Some aspects of using stripping potentiometry for measurements with carbon paste electrodes plated with mercury- and gold films; in Monitoring of Environmental Pollutants — III (in Czech), eds. K. Vytřas, J. Kellner, and J. Fischer (University of Pardubice, 2001), pp. 123–134.

  243. I. Švancara, M. Fairouz, Kh. Ismail, R. Metelka, and K. Vytřas, A contribution to the characterisation of mercury- and bismuth film carbon paste electrodes in stripping voltammetry. Scientific Papers of the University of Pardubice, Series A; 9 (2003): 31–48.

    Google Scholar 

  244. I. Švancara, M. Fairouz, Kh. Ismail, J. Šrámková, R. Metelka, and K. Vytřas: Applicability of electrochemical stripping analysis at mercury- and bismuth-film carbon paste electrodes to crude oil digests. Scientific Papers of the University of Pardubice, Series A; 10 (2004): 5–20.

    Google Scholar 

  245. E. Tesařová, A. Królicka, A. Bobrowski, I. Švancara, and K. Vytřas, A study on simultaneous determination of indium and cadmium at mercury-based and bismuth filmplated electrodes, Scientific Papers of the University of Pardubice, Series A; 10 (2004): 21–32.

    Google Scholar 

  246. I. Švancara, E. Tesařová, and R. Metelka, Stripping voltammetry at mercury-film plated carbon paste electrodes: Ten years of advanced laboratory exercises for students at the University of Pardubice. Scientific Papers of the University of Pardubice, Series A; 11 (2005): 343–361.

    Google Scholar 

  247. I. Švancara, K. Vytřas, A. Bobrowski, and K. Kalcher, Determination of arsenic at a goldplated carbon paste electrode using constant current stripping analysis. Talanta, 56 (2002): 45–55.

    Article  Google Scholar 

  248. A. Królicka, R. Pauliukaitė, I. Švancara, R. Metelka, E. Norkus, A. Bobrowski, K. Kalcher, and K. Vytřas, Bismuth film-plated carbon paste electrodes, Electrochemistry Communications, 4 (2002): 193–196.

    Article  Google Scholar 

  249. K. Vytřas, I. Švancara, and R. Metelka, A novelty in potentiometric stripping analysis: Total replacement of mercury by bismuth. Electroanalysis, 14 (2002): 1359–1364.

    Article  Google Scholar 

  250. S. A. A. Elsuccary, I. Švancara, R. Metelka, L. Baldrianová, M. E. M. Hassouna, and K. Vytřas, Applicability of bismuth film carbon paste electrodes in highly alkaline media. Scientific Papers of the University of Pardubice, Series A; 9 (2003): 5–17.

    CAS  Google Scholar 

  251. I. Švancara, L. Baldrianová, E. Tesařová, S. A. A. Elsuccary, A. Economou, S. Sotiropoulos, A. Bobrowski, and K. Vytřas, Stripping voltammetry of metal-ion mixtures at bismuth film-plated electrodes; in Monitoring of Environmental Pollutants — VI (in Czech), eds. K. Vytřas, J. Kellner, and J. Fischer (University of Pardubice, 2004), pp. 229–246.

  252. I. Švancara, L. Baldrianová, M. Vlček, R. Metelka, and K. Vytřas, A role of the plating regime in the deposition of bismuth films onto a carbon paste electrode: Microscopic study. Electroanalysis, 17 (2005): 120–126.

    Article  CAS  Google Scholar 

  253. E. Tesařová, L. Baldrianová, A. Królicka, I. Švancara, A. Bobrowski, and K. Vytřas, Role of supporting electrolyte in anodic stripping voltammetry of In(III) in the presence of Cd(II) and Pb(II) using bismuth film electrodes; in Sensing in Electroanalysis, eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2005), pp. 75–87.

    Google Scholar 

  254. K. Vytřas, L. Baldrianová, E. Tesařová, A. Bobrowski, and I. Švancara, Comments to Stripping voltammetric determination of copper(II) at bismuth-modified carbon substrate electrodes; in Sensing in Electroanalysis, eds. K. Vytřas, K. Kalcher. (Pardubice: University of Pardubice, 2005), pp. 49–58.

    Google Scholar 

  255. I. Švancara, L. Baldrianová, E. Tesařová, T. Mikysek, and K. Vytřas, Determination of tin(II) at bismuth-modified carbon paste electrodes: An initial study; in: Monitoring of Environmental Pollutants — VII (in Czech), eds.: K. Vytřas, J. Kellner, and J. Fischer. (Pardubice: University of Pardubice, 2005), pp. 139–148.

    Google Scholar 

  256. I. Švancara, L. Baldrianová, E. Tesařová, S. B. Hočevar, S. A. A. Elsuccary, A. Economou, S. Sotiropoulos, B. Ogorevc, and K. Vytřas, Recent advances in anodic stripping voltammetry with Bi-modified carbon paste electrodes. Electroanalysis, 18 (2006): 177–185.

    Article  CAS  Google Scholar 

  257. L. Baldrianová, I. Švancara, M. Vlček, A. Economou, and S. Sotiropoulos, Effect of Bi(III) concentration on the stripping voltammetric response of in-situ bismuth-coated carbon paste and gold electrodes. Electrochimica Acta, 52 (2006): 481–490.

    Article  CAS  Google Scholar 

  258. I. Švancara, L. Baldrianová, E. Tesařová, T. Mikysek, and K. Vytřas, Anodic stripping voltammetry at bismuth-modified electrodes in ammonia-buffered media. Scientific Papers of University of Pardubice, Series A; 12 (2006): 5–19.

    Google Scholar 

  259. L.-Y. Cao, J.-B. Jia, and Z.-H. Wang, Sensitive determination of Cd(II) and Pb(II) by differential pulse stripping voltammetry with in-situ bismuth-coated zeolite doped carbon paste electrodes. Electrochimica Acta, 53 (2007): 2177–2182.

    Article  CAS  Google Scholar 

  260. I. Adraoui, M. E. Rhazi, and A. Amine, Fibrinogen-coated bismuth film electrodes for voltammetric analysis of lead and cadmium using the batch injection analysis, Analytical Letters, 40 (2007): 349–367.

    Article  CAS  Google Scholar 

  261. I. Švancara, L. Baldrianová, E. Tesařová, M. Vlček, K. Vytřas, and S. Sotiropoulos, Microscopic studies with bismuth-modified carbon paste electrode substrates: Morphological transformations of bismuth microstructures and related observations; in Sensing in Electroanalysis — 2, eds. K. Vytřas and K. Kalcher. (University of Pardubice, 2007), pp. 35–58.

  262. L. Baldrianová, I. Švancara, K. Vytřas, and S. Sotiropoulos, Variation of the metal analyte-to-bismuth peak ratio with deposition time in anodic stripping voltammetry at in-situ bismuthcoated carbon paste electrodes, in Sensing in Electroanalysis — 2, eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2007), pp. 59–74.

    Google Scholar 

  263. R. Pauliukaitė, R. Metelka, I. Švancara, A. Królicka, A. Bobrowski, K. Vytřas, E. Norkus, and K. Kalcher, Carbon paste electrodes modified with Bi2O3 as sensors for the determination of cadmium and lead. Analytical and Bioanalytical Chemistry, 374 (2002): 1155–1158.

    Article  CAS  Google Scholar 

  264. S. B. Hočevar, I. Švancara, B. Ogorevc, and K. Vytřas, Novel electrode for electro-chemical stripping analysis based on carbon paste modified with bismuth powder. Electro-chimica Acta, 51 (2005): 706–710.

    Article  CAS  Google Scholar 

  265. L. Baldrianová, P. Agrafiotou, I. Švancara, K. Vytřas, and S. Sotiropoulos, The determination of cysteine at bismuth-powder carbon paste electrodes by cathodic stripping voltammetry. Electrochemistry Communications, 10 (2008): 918–921.

    Article  CAS  Google Scholar 

  266. K. Vytřas, I. Švancara, and R. Metelka, Bismuthbased electrodes in electrochemical stripping analysis: A review; in Monitoring of Environmental Pollutants — IV (in Czech), eds. K. Vytřas, J. Kellner, and J. Fischer. (University of Pardubice, 2002). pp. 159–170.

  267. A. Economou, Bismuth-film electrodes: recent developments and potentialities for electroanalysis (A review). Trends in Analytical Chemistry, 24 (2005): 334–340.

    Article  CAS  Google Scholar 

  268. J. Wang, Stripping analysis at bismuth electrodes: A Review. Electroanalysis, 17 (2005): 1341–1346.

    Article  CAS  Google Scholar 

  269. I. Švancara and K. Vytřas, Electroanalysis with bismuth electrodes: State of the art and future prospects (in Czech). Chemické Listy, 100 (2006): 90–113.

    Google Scholar 

  270. C. Kokkinos and A Economou, Stripping analysis at bismuth-based electrodes. Current Analytical Chemistry, 4 (2008): 183–190.

    Article  CAS  Google Scholar 

  271. C. Gouveia Caridade, R. Pauliukaitė, and C. M. A. Brett, Influence of Nafion coatings and surfactant on the stripping voltammetry of heavy metals at bismuth-modified carbon film electrodes. Electroanalysis, 18 (2006): 854–861.

    Article  CAS  Google Scholar 

  272. R. Kalvoda, Is polarography still attractive? (A Review). Chemia Analyticzna (Warsaw), 52 (2007): 869–873.

    CAS  Google Scholar 

  273. I. Švancara, S. B. Hočevar, L. Baldrianová, E. Tesařová, and K. Vytřas, Antimony-modified carbon paste electrodes: Initial studies and prospects. Scientific Papers of the University of Pardubice, Series A; 13 (2007): 5–19.

    Google Scholar 

  274. R. Pauliukaitė and K. Kalcher, On using of CPE and SPCE modified by Bi2O3 and Sb2O3 for trace analysis of some heavy metals; in YISAC’ 01: 8th Young Investigators’ Seminar on Analytical Chemistry, Book of Abstracts (University of Pardubice, 2001), pp. 10–11.

  275. A. Bobrowski, A. Królicka, and E. Łyczkowska, Carbon paste electrode plated with lead film: Electrochemical characteristics and application in adsorptive stripping voltammetry. Electroanalysis, 20 (2008): 61–67.

    Article  CAS  Google Scholar 

  276. A. Economou and A. Voulgaropoulos, A study of the square-wave modulation for the determination of trace metals by anodic and adsorptive stripping voltammetry with bismuth film electrodes. Scientific Papers of the University of Pardubice, Series A; 10 (2004): 33–46.

    CAS  Google Scholar 

  277. R. Pauliukaite and K. Kalcher, Determination of Traces of Cd(II) and Pb(II) Using a Bi-Modified Carbon Paste and Screen-Printed Carbon Electrodes; in US-CZ Workshop on Electrochemical Sensors — Prague’ 01, Book of Abstracts; eds. J. Barek and J. Drašar J. (Prague: Czech Chemical Society, 2001), pp. 30–31.

    Google Scholar 

  278. R. Pauliukaitė, R. Metelka, I. Švancara, A. Królicka, A. Bobrowski, E. Norkus, K. Kalcher, K. Vytřas, Screen-printed carbon electrodes bulk-modified with Bi2O3 or Sb2O3 for trace determination of heavy metals. Scientific Papers of the University of Pardubice, Series A; 10 (2004): 47–58.

    Google Scholar 

  279. R. Metelka, M. Stočes, J. Krejčí, M. Bartoš, I. Švancara, P. Kotzian, and K. Vytřas, Development and characterization of new types of screen-printed bismuth-based sensors; in: Sensing in Electroanalysis — 2, eds. K. Vytřas and K. Kalcher. (Pardubice: University of Pardubice, 2007), pp. 169–179.

    Google Scholar 

  280. K. Kalcher, I. Švancara, M. Buzuk, K. Vytřas, and A. Walcarius, Electrochemical sensors and biosensors based on heterogeneous carbon materials. Monatshefte fur Chemie — Chemical Monthly, 140 (2009): 861–889.

    Article  CAS  Google Scholar 

  281. J. Růžička, C. G. Lamm, and J. C. Tjell, Selectrode™ — the universal ion-selective electrode: Concept, construction and materials. Analytica Chimica Acta, 62 (1972): 15–28.

    Article  Google Scholar 

  282. K. Vytřas and I. Švancara, Carbon pastebased ion-selective electrodes, in Sensing in Electroanalysis — 2, eds. K. Vytřas and K. Kalcher. (University of Pardubice, 2007), pp. 7–22.

  283. R. P. Buck, Electrochemical Methods: Ion-Selective Electrodes, in Water Analysis, Vol. II, eds. R. A. Minear and L. H. Keith. (Orlando: Academic Press, 1984), pp. 249–321.

    Google Scholar 

  284. K. Vytřas, J. Kalous, V. Dlabka, and J. Ježková, Studies on potentiometric titrations using simple liquid membrane-based electrodes: Coated-wires versus carbon pastes. Scientific Papers of the University of Pardubice, Series A; 3 (1997): 307–321.

    Google Scholar 

  285. K. Vytřas, J. Kalous, and J. Ježková: Automated potentiometry as an ecologic alternative to two-phase titrations of surfactants. Egyptian Journal of Analytical Chemistry, 6 (1997): 107–123.

    Google Scholar 

  286. L. Tymecki, M. Jakubowska, S. Achmatowicz, R. Koncki, and S. Glab, Potentiometric thick-film graphite electrodes with improved response to copper ions. Analytical Letters, 34 (2001): 71–78.

    Article  CAS  Google Scholar 

  287. A. Abbaspour and S. S. M. Moosavi, Chemically modified carbon paste electrode for determination of copper(II) by potentiometric method. Talanta, 56 (2002): 91–96.

    Article  CAS  Google Scholar 

  288. M. Javanbakht, A. Badiei, M. R. Ganjali, P. Norouzi, A. Hasheminasab, and M. Abdouss, Use of organo-functionalized nanoporous silica gel to improve the lifetime of carbon paste electrode for determination of Cu(II). Analytica Chimica Acta, 601 (2007): 172–182.

    Article  CAS  Google Scholar 

  289. H. M. Abu-Shawish and S. M. Saadeh, A new chemically modified carbon paste electrode for determination of copper based on N,N′-disalicylidenehexametylene-diaminate copper(II) complex. Sensor Letters, 5 (2007): 565–571.

    Article  CAS  Google Scholar 

  290. M. J. Gismera, M. T. Sevilla, and J. R. Procopio, Flow and batch systems for copper(II) potentiometric sensing. Talanta, 14 (2008): 190–197.

    Google Scholar 

  291. R. Chaisuksant, L. Pattanarat, and K. Grudpan, Naphthazarin modified carbon paste electrode for determination of copper(II). Microchimica Acta, 162 (2008): 181–188.

    Article  CAS  Google Scholar 

  292. M. H. Mashhadizadeh, K. Eskandari, A. Foroumadi, and A. Shafiee, Copper(II) modified carbon paste electrodes based on self-assembled mercapto compounds-gold-nanoparticle. Talanta, 76 (2008): 497–502.

    Article  CAS  Google Scholar 

  293. M. Javanbakht, M. R. Ganjali, P. Norouzi, A. Badiei, A. Hasheminasab, and M. Abdouss, Carbon paste electrode modified with functionalized nanoporous silica gel as a new sensor for determination of silver ion. Electroanalysis, 19 (2007): 1307–1314.

    Article  CAS  Google Scholar 

  294. M. N. Abbas and G. A. E. Mostafa, New triiodomercurate-modified carbon paste electrode for the potentiometric determination of mercury(II). Analytica Chimica Acta, 478 (2003): 329–335.

    Article  CAS  Google Scholar 

  295. M. H. Mashhadizadeh, M. P. Talakesh, Mahnaz, and H. M. M. Hamidian, A novel modified carbon paste electrode for potentiometric determination of mercury(II) ion. Electroanalysis, 18 (2006): 2174–2179.

    Article  CAS  Google Scholar 

  296. M. J. Gismera, J. R. Procopio, and M. T. Sevilla, Characterization of mercury-humic acids interaction by potentiometric titration with a modified carbon paste mercury sensor. Electroanalysis, 19 (2007): 1055–1061.

    Article  CAS  Google Scholar 

  297. M. J. Gismera, M. T. Sevilla, and J. R. Procopio, Potentiometric carbon paste sensors for lead(II) based on dithiodibenzoic and mercaptobenzoic acids. Analytical Sciences (Japan), 22 (2006): 405–410.

    Article  CAS  Google Scholar 

  298. M. M. Ardakani, M. A. Karimi, M. H. Mashhadizadeh, M. Pesteh, M. S. Azimi, and H. Kazemian, Potentiometric determination of monohydrogen arsenate by zeolite-modified carbon-paste electrode. International Journal of Environmental Analytical Chemistry, 87 (2007): 285–294.

    Article  CAS  Google Scholar 

  299. G. A. E. Mostafa, Development and characterization of ion selective electrode for the assay of antimony. Talanta, 71 (2007): 1449–1454.

    Article  CAS  Google Scholar 

  300. G. A. E. Mostafa and A. M. Homoda, Potentiometric carbon paste electrodes for the determination of bismuth in some pharmaceutical preparations. Bulletin of the Chemical Society of Japan, 81 (2008): 257–261.

    Article  Google Scholar 

  301. H. R. Pouretedal and M. H Keshavarz, Cyclam modified carbon paste electrode as a potentiometric sensor for determination of cobalt(II) ions. Gaodeng Xuexiao Huaxue Xuebao (Chemical Research in Chinese Universities), 21 (2005): 28–31.

    CAS  Google Scholar 

  302. M. Galík, M. Cholota, I. Švancara, A. Bobrowski, and K. Vytřas, A Study on stripping voltammetric determination of osmium(IV) at a carbon paste electrode modified in situ with cationic surfactants. Electroanalysis, 18 (2006): 2218–2224.

    Article  CAS  Google Scholar 

  303. M. F. S. Teixeira, E. T. G. Cavalheiro, M. F. Bergamini, F. C. Moraes, and N. Bocchi, Use of a carbon paste electrode modified with spinel-type manganese oxide as a potentiometric sensor for lithium ions in flow injection analysis. Electroanalysis, 16 (2004): 633–639.

    Article  CAS  Google Scholar 

  304. C. F. B. Coutinho, A. A. Muxel, C. G. Rocha, D. A. de Jesus, R. V. S. Alfaya, F. A. S. Almeida, Y. Gushikem, and A. A. S. Alfaya, Ammonium ion sensor based on SiO2 / ZrO2 / phosphate-NH4+ composite for quantification of ammonium ions in natural waters. Journal of Brazilian Chemical Society, 18 (2007): 189–194.

    CAS  Google Scholar 

  305. M. N. Abbas, Chemically modified carbon paste electrode for iodide on the basis of cetyltrimethylammonium iodide ion-pair. Analytical Sciences (Japan), 19 (2003): 229–233.

    Article  CAS  Google Scholar 

  306. J. Tan, J. H. Bergantini, A. Merkoci, S. Alegret, and F. Sevilla, Oil dispersion of AgI/Ag2S salts as a new electroactive material for potentiometric sensing of iodide and cyanide. Sensors & Actuators B, Chemical; 101 (2004): 57–62.

    Article  CAS  Google Scholar 

  307. A. Abbaspour, M. Asadi, A. Ghaffarinejad, and E. Safaei, A selective modified carbon paste electrode for determination of cyanide using tetra-3,4-pyridinoporphyrazinato-cobalt(II). Talanta, 93 (2005): 931–936.

    Article  CAS  Google Scholar 

  308. M. Shamsipur, S. Ershad, N. Samadi, A. Moghimi, and H. Aghabozorg, A novel chemically modified carbon paste electrode based on a new mercury(II) complex for selective potentiometric determination of bromide ion. Journal of Solid State Electro-chemistry, 9 (2005): 788–793.

    Article  CAS  Google Scholar 

  309. A. Soleymanpour, E. H. Asl, and M. A. Nasseri, Chemically modified carbon paste electrode for determination of sulfate ion, SO42-, by potentiometric method. Electroanalysis, 18 (2006): 1598–1604.

    Article  CAS  Google Scholar 

  310. K. Vytřas, Potentiometric titrations based on ionpair formation. Ion-Selective Electrode Reviews, 7 (1985): 77–164.

    Google Scholar 

  311. H. Ibrahim, Y. M. Issa, and H. M. Abu Shawish, Chemically modified CPE for the potentiometric determination of Dicylomine hydrochloride under batch and in FIA conditions. Analytical Sciences (Japan), 20 (2004): 911–916.

    Article  CAS  Google Scholar 

  312. S. I. M. Zayed, New plastic membrane and carbon paste ion selective electrodes for potentiometric determination of Triprolidine. Analytical Sciences, 20 (2004): 1043–1048.

    Article  CAS  Google Scholar 

  313. H. Ibrahim, Chemically modified carbon paste electrode for the potentiometric FIA of Piribedil in pharmaceutical preparation and urine. Journal of Pharmaceutical and Biomedical Analysis, 38 (2005): 524–632.

    Article  CAS  Google Scholar 

  314. Y. M. Issa, H. Ibrahim, and H. M. Abu Shawish, Carbon paste electrode for the potentiometric flow injection analysis of Drotaverine in serum and urine. Microchimica Acta, 150 (2005): 47–54.

    Article  CAS  Google Scholar 

  315. M. N. Abbas and G. A. E. Mostafa, Gallaminetetraphenylborate-modified carbon paste electrode for potentio-metric determination of gallamine triethiodide (Flaxedil). Journal of Pharmaceitical and Biomedical Analysis, 31 (2003): 819–826.

    Article  CAS  Google Scholar 

  316. K. I. Ozomena, R. I. Stefan, J. F. van Staden, and H. Y. Aboul Enein, Enantioanalysis of S-Perindopril using different cyclodextrin-based potentiometric sensors. Sensors & Actuators B, Chermical; 105 (2005): 425–429.

    Article  CAS  Google Scholar 

  317. R. I. Stefan van Staden, R. G. Bokretsion, K. I. Ozomena, J. F. van Staden, and H. Y. Aboul Enein, Enantioselective, potentiometric membrane electrodes based on different cyclodextrins as chiral selectors for the assay of S-Flurbiprofen. Electroanalysis, 18 (2006): 1718–1721.

    Article  CAS  Google Scholar 

  318. R. I. Stefan van Staden, R. G. Bokretsion, and K. I. Ozomena, Utilization of maltodextrin-based enantioselective, potentiometric membrane electrodes for the enantio-selective assay of S-Flurbiprofen. Analytical Letters, 39 (2006): 1065–1073.

    Article  CAS  Google Scholar 

  319. V. V. Cosofret and R. P. Buck, Drug-Type Substances analysis with membrane electrodes, Ion-Selective Electrode Reviews, 6 (1984): 59–121.

    CAS  Google Scholar 

  320. K. Vytřas, The use of ion-selective electrodes in the determination of drug substances. Journal of Pharmaceutical and Biomedical Analysis, 7 (1989): 789–812.

    Article  Google Scholar 

  321. K. I. Ozomena and R. I. Stefan, Enantioselective potentiometric electrodes based on alpha-, beta-, and gamma-cyclodextrins as chiral selectors for the assay of l-proline. Talanta, 66 (2005): 501–504.

    Article  CAS  Google Scholar 

  322. M. K. Amini, S. Shahrokhian, S. Tangestaninejad, and V. Mirkhani, Iron(II) phthalocyanine-modified carbon paste electrode for potentiometric detection of ascorbic acid. Analytical Biochemistry, 290 (2001): 277–282.

    Article  CAS  Google Scholar 

  323. B. N. Barsoum, W. M. Watson, I. M. Mahdi, and E. Khaled, Electrometric assay for the determination of acetylcholine using a sensitive sensor based on carbon paste. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 567 (2004): 277–281.

    Article  CAS  Google Scholar 

  324. M. K. Amini, J. H. Khorasani, S. S. Khaloo, and S. Tangestaninejad, Cobalt(II) salophen-modified carbon paste electrode for potentiometric and voltammetric determination of cysteine. Analytical Biochemistry, 320 (2003): 32–38.

    Article  CAS  Google Scholar 

  325. S. S. Khaloo, M. K. Amini, S. Tangestaninejad, S. Shahrokhian, and R. Kia, Voltam-metric and potentiometric study of cysteine at Co(II)-phthalocyanine modified carbon paste electrode. Journal of Iranian Chemical Society, 1 (2004): 128–135.

    CAS  Google Scholar 

  326. S. Shahrokhian and J. Yazdani, Electrocatalytic oxidation of thioglycolic acid (TGA) at carbon paste electrode modified with Co(II)-phthalocyanine: Applications as a potentiometric sensor. Electrochimica Acta, 48 (2003): 4143–4148.

    Article  CAS  Google Scholar 

  327. M. K. Amini, S. Shahrokhian, S. Tangestaninejad, and I. M. Baltork, Voltammetric and potentiometric behavior of 2-pyridinethiol, 2-mercaptoethanol and sulfide at iron(II) phthalocyanine modified carbon-paste electrode. Iranian Journal of Chemistry & Chemical Engineering, 20 (2001): 29–36.

    CAS  Google Scholar 

  328. H. Ibrahim and A. Khorshid, Modified Carbon paste sensor for cetyltrimethyl-ammonium ion based on its ion-associate with tetrachloropalladate(II). Analytical Sciences (Japan), 23 (2007): 573–579.

    Article  CAS  Google Scholar 

  329. J. Konvalina and K. Vytřas, The present use of (chrono)potentiometric stripping analysis (In Czech). Chemické Listy, 95 (2001): 344–352.

    CAS  Google Scholar 

  330. I. Švancara and K. Vytřas, Voltammetry with carbon paste electrodes containing membrane plasticizers used for PVC-based ion-selective electrodes. Anal Chim. Acta, 273 (1993): 195–204.

    Article  Google Scholar 

  331. K. Vytřas and J. Konvalina, New possibilities of potentiometric stripping analysis based on ion-pair formation and accumulation of analyte at carbon paste electrodes (Preliminary note). Electroanalysis, 10 (1998): 787–790.

    Article  Google Scholar 

  332. K. Vytřas, Ion-pairing principles in the light of construction of ion-selective electrodes and sensors for both voltammetric and potentiometric stripping analysis, in Electroanalytical Chemistry and Allied Topics, eds. S. K. Aggarwal, H. S. Sharma, N. Gopinath, and D. S. C. Purushotham. (Mumbai: SAEST, 2000), pp. 127–130.

    Google Scholar 

  333. J. Konvalina and K. Vytřas, Determination of thallium(III) at a carbon paste electrode with the aid of potentiometric stripping analysis, in Monitororing of Environmental Pollutants (in Czech), eds. K. Vytřas, J. Kellner, J. Fischer. (Univerzita Pardubice, 1999), pp. 99–104.

  334. I. Švancara, B. Ogorevc, S. B. Hočevar, and K. Vytřas, Perspectives of carbon paste electrodes in stripping potentiometry. Analytical Sciences (Japan), 18 (2002): 301–305.

    Article  Google Scholar 

  335. J. Konvalina, E. Khaled, and K. Vytřas, Carbon paste electrode as a support for mercury film in potentiometric stripping determination of heavy metals. Collection of Czechoslovak Chemical Communications, 65 (2000): 1047–1054.

    Article  CAS  Google Scholar 

  336. E. Khaled, J. Konvalina, K. Vytřas and H. N. A. Hassan, Investigation of carbon paste electrodes as supports for gold films in stripping potentiometry of Cu(II) and Hg(II) traces. Scientific Papers of the University of Pardubice, Series A; 9 (2003): 19–29.

    CAS  Google Scholar 

  337. E. Tesařová and K. Vytřas, Potentiometric stripping analysis with antimony film electrodes. Electroanalysis, 21 (2009): 1075–1080.

    Article  CAS  Google Scholar 

  338. J.-M. Zen, A. S. Kumar, and D.-M. Tsai, Recent updates of chemically modified electrodes in analytical chemistry (Review). Electroanalysis, 15 (2003): 1073–1087.

    Article  CAS  Google Scholar 

  339. N. Y. Stozhko, N. A. Malakhova, M. V. Fyodorov, and Kh. Z. Brainina, Modified carboncontaining electrodes in stripping voltammetry of metals. Part I: Glassy carbon and carbon paste electrodes. Journal of Solid State Electrochemistry, 12 (2008): 1185–1204.

    Article  CAS  Google Scholar 

  340. N. Y. Stozhko, N. A. Malakhova, M. V. Fyodorov, and Kh. Z. Brainina, Modified carbon-containing electrodes in stripping voltammetry of metals. Part II: Composite and microelectrodes. Journal of Solid State Electrochemistry, 12 (2008): 1219–1230.

    Article  CAS  Google Scholar 

  341. K. Vytřas, K. Kalcher, I. Švancara, E. Khaled, J. Ježková, J. Konvalina, and R. Metelka, Recent applications of carbon paste electrodes in potentiometry and stripping analysis; in Chemical Sensors and Analytical Methods, Book of Proceedings; eds. M. Butler, P. Vanýsek, and N. Yamazoe. (Pennigton: Electrochemical Society, 2001), pp. 277–283.

    Google Scholar 

  342. A. Bobrowski and J. Zarebski, Catalytic adsorptive stripping voltammetry at film electrodes. Current Analytical Chemistry, 4 (2008), 191–201.

    Article  CAS  Google Scholar 

  343. C. Locatelli, Voltammetric analysis of trace levels of platinum group metals: Principles and applications (Review). Electroanalysis, 19 (2007): 2167–2175.

    Article  CAS  Google Scholar 

  344. J. Zima, I. Švancara, J. Barek, and K. Pecková, Carbon Paste Electrodes for the Determination of Detrimental Substances in Drinking Water, in: Progress on Drinking Water Research, eds. M. H. Lefebvre and M. M. Roux. (New York: Nova Science Publ., in press; https://www.novapublishers.com/catalog/product_info.php?cPath=23_597_703&products_id=7407&osCsid=cf1cb6ee708126d565c89956e2512406; January 30, 2008.

    Google Scholar 

  345. Kh. Z. Brainina, Electroanalysis: From laboratory to field versions (Review). Journal of Analytical Chemistry, 56 (2001): 303–312.

    Article  CAS  Google Scholar 

  346. N. Serrano, J. M. Díaz Cruz, C. Ariño, and M. Esteban, Stripping chronopotentiometry in environmental analysis (Review). Electroanalysis, 19 (2007): 2039–2049.

    Article  CAS  Google Scholar 

  347. D. Lowinsohn and M. Bertotti, Electrochemical sensors: Fundamentals and applications in micro-environments. Quimica Nova, 29 (2006): 1318–1325.

    CAS  Google Scholar 

  348. O. D. Renedo, M. A. Alonso Lomillo, and M. J. A. Martinez, Recent developments in the field of screen-printed electrodes and their related applications (Review). Talanta, 73 (2007): 202–219.

    Article  CAS  Google Scholar 

  349. Z. Navrátilová and P. Kula, Clay modified electrodes: Present applications and prospects. Electroanalysis, 15 (2003): 837–846.

    Article  Google Scholar 

  350. S. E. W. Jones and R. G. Compton, Fabrication and applications of nanoparticle-modified electrodes in stripping analysis. Current Analytical Chemistry, 4 (2008): 177–182.

    Article  CAS  Google Scholar 

  351. P. Kula and Z. Navrátilová, Anion exchange of gold chloro complexes on carbon paste electrode modified with montmorillonite for determination of gold in pharmaceuticals. Electroanalysis, 13 (2001): 795–798.

    Article  CAS  Google Scholar 

  352. K.-S. Ha, J.-H. Kim, Y.-S. Ha, S.-S. Lee, and M.-L. Seo, Anodic stripping voltam-metric determination of silver(I) at a carbon paste electrode modified with S2O2-donor podand. Analycal Letters, 34 (2001): 675–686.

    Article  CAS  Google Scholar 

  353. S.-B. Zhang, X.-J. Zhang, and X.-Q. Lin, An ethylenediaminetetraacetic acid modified carbon paste electrode for the determination of silver ion. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 30 (2002): 745–747.

    CAS  Google Scholar 

  354. M.-S. Won, J.-S. Yeom, J.-H. Yoon, E.-D. Jeong, and Y.B. Shim, Determination of Ag(I) ion at a modified carbon paste electrode containing N,N′-diphenyl oxamide. Bulletin of the Korean Chemical Socienty, 24 (2003): 948–952.

    Article  CAS  Google Scholar 

  355. C.-H. Yang, W.-S. Huang, and S.-H. Zhang, Highly sensitive electrochemical determination of trace Pb2+ and Ag+ in the presence of cetyltrimethylamonium bromide. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 31 (2003): 794–798.

    CAS  Google Scholar 

  356. Y.-H. Li, H.-Q. Xie, and F.-Q. Zhou, Alizarin violet modified carbon paste electrode for the determination of trace silver(I) by adsorptive voltammetry. Talanta, 67 (2005): 28–33.

    Article  CAS  Google Scholar 

  357. A. Mohadesi and M. A. Taher, Stripping voltammetric determination of silver(I) at carbon paste electrode modified with 3-amino-2-mercapto quinazolin-4(3H)-one. Talanta, 71 (2007): 615–619.

    Article  CAS  Google Scholar 

  358. A. V. Laganovsky, Z. O. Kormosh, A. O. Fedorchuk, V. P. Sachanyuk, and O. V. Parasyuk, AgCrTiS4: Synthesis, Properties, and Analytical Application. Metallurgic Material Transactions — B, 39 (2008): 155–159.

    Article  CAS  Google Scholar 

  359. W. Huang, C. Yang, and S. Zhang, Anodic stripping voltammetric determination of mercury by use of a sodium montmorillonite-modified carbon-paste electrode. Analytical and Bioanalytical Chemistry, 274 (2002): 998–1001.

    Article  CAS  Google Scholar 

  360. Y.-T. Kong, G.-H. Choi, M.-S. Won, and Y.-B. Shim, Determination of Hg2(2+) ions using the specific reaction with a picolinic acid N-oxide modified electrode. Chemical Letters, 31 (2002): 54–55.

    Article  Google Scholar 

  361. A. Walcarius, M. Etienne, and C. Delacôte, Uptake of inorganic HgII by organically modified silicates: Influence of pH and chloride concentration on the binding pathways and electrochemical monitoring of the processes. Analytica Chimica Acta, 508 (2004): 87–98.

    Article  CAS  Google Scholar 

  362. M. Colilla, M. A. Mendiola, J. R. Procopio, and M. T. Sevilla, Application of a carbon paste electrode modified with a Schiff base ligand to mercury speciation in water. Electroanalysis, 17 (2005): 933–940.

    Article  CAS  Google Scholar 

  363. N. L. Dias and D. R. Do Carmo, Stripping voltammetry of mercury(II) with a chemically modified carbon paste electrode containing silica gel functionalized with 2,5-dimercapto-1,3,4-thiadiazol. Electroanalysis, 17 (2005): 1540–1546.

    Article  CAS  Google Scholar 

  364. I. K. Tonle, E. Ngameni, and A. Walcarius, Preconcentration and voltammetric analysis of Hg(II) at carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sensors & Actuators B, Chemical; 110 (2005): 195–203.

    Article  CAS  Google Scholar 

  365. N. L. D. Filho, D. R. do Carmo, F. Gessner, and A. H. Rosa, Preparation of a clay-modified carbon paste electrode based on 2-thiazoline-2-thiolhexadecylammonium sorption for the sensitive determination of Hg(II) ion. Analytical Sciences, 21 (2005): 1309–1316.

    Article  Google Scholar 

  366. F. Dias, L. Newton, L. D. R. do Carmo, and A. H. Rosa, An electroanalytical application of 2-aminothiazole-modified silica gel after adsorption and separation of Hg(II) from heavy metals in aqueous solution. Electrochimica Acta, 52 (2006): 965–972.

    Article  CAS  Google Scholar 

  367. N. L. Dias, L. Caetano, D. R. do Carmo, and A. H. Rosa, Preparation of a silica gel modified with 2-amino-1,3,4-thiadiazole for adsorption of metal ions and electroanalytical application. Journal of Brazilian Chemical Society, 17 (2006): 473–481.

    Google Scholar 

  368. N. L. Dias, D. R. do Carmo, and A. H. Rosa, Selective sorption of mercury(II) from aqueous solution with an organically modified clay and its electroanalytical application. Separation Sciences Technology, 41 (2006): 733–746

    Article  CAS  Google Scholar 

  369. L. H. Marcolino, B. C. Janegitz, B. C. Lourencao, and O. Fatibello, Anodic stripping voltammetric determination of mercury in water using a chitosan-modified sarbon paste electrode. Analytical Letters, 40 (2007): 3119–3128.

    Article  CAS  Google Scholar 

  370. H. Zejli, J. de Cisneros, I. N. Rodríguez, H. Elbouhouti, M. Choukairi, D. Bouchta, and K. R. Temsamani, Electrochemical analysis of mercury using a cryptofix carbon-paste electrode. Analytical Letters, 40 (2007): 2788–2798.

    Article  CAS  Google Scholar 

  371. M. C. Rizea, A. F. Danet, and S. Kalinowski, Determination of mercury(II) after its preconcentration on a carbon paste electrode modified with Cadion A. Revista de Chimie (Bucharest), 58 (2007): 266–269.

    CAS  Google Scholar 

  372. E. Sar, H. Berber, B. Asct, and H. Cankitrtaran, Determination of some heavy metal ions with a carbon paste electrode modified by poly(glycidylmethacrylate-methyl-ethacrylatedivinylbenzene) microspheres functionalized by 2-aminothiazole. Electro-analysis, 20 (2008): 1533–1541.

    CAS  Google Scholar 

  373. I. Cesarino, G. Marino, J. D. Matos, and E. T. G. Cavalheiro, Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of lead, copper and mercury ions. Talanta, 15 (2008): 15–21.

    Article  CAS  Google Scholar 

  374. J Ruiperéz, M. A. Mendiola, M. Tereza Sevilla, J. R. Procopio, L. Hernández, Application of a macrocyclic thio-hydrazone modified carbon paste electrode to copper speciation in water samples. Electroanalysis, 14 (2002): 532–539.

    Article  Google Scholar 

  375. A. Abbaspour and S. S. M. Moosavi, Chemically modified carbon paste electrode for determination of copper(II) by potentiometric method. Talanta, 56 (2002): 91–96.

    Article  CAS  Google Scholar 

  376. Y. Zhang, X. Q. Lu, K. M. Zhu, Z. H. Wang, and J. W. Kang, Voltammetric detection of traces of copper using a casbon paste electrode modified with tetraphenylporphyrin. Analytical Letters, 35 (2002): 369–381.

    Article  CAS  Google Scholar 

  377. C. T. Gautier, W. T. L. da Silva, M. O. O. Rezende, and N. El Murr, Sensitive and reproducible quantification of Cu2+ by stripping with a carbon paste electrode modified with humic acid. Journal of Environmental Science Health, Part A; 38 (2003): 1811–1823.

    Article  CAS  Google Scholar 

  378. S. Yang, X.-Q. Lu, Y.-H. Xue, X.-Q. Feng, and X.-F. Wang, 4-methoxy-2,5-bis(3,5-dimethylpyrazoyl)-1,3,5-triazine modified carbon paste electrode for trace Cu(II) determination by differential pulse voltammetry. Rare Metals, 22 (2003): 250–253.

    CAS  Google Scholar 

  379. I. Jureviciutė and A. Malinauskas, Preparation of 2-mercaptobenzothiazole modified carbon paste electrode and its application to the stripping analysis of copper. Chemia Analyticzna (Warsaw), 49 (2004): 339–349.

    Google Scholar 

  380. A. F. Danet, D. Neagu, M. P. Dondoi, and N. Iliescu, Anodic stripping voltammetric determination of copper(II) with salicylaldoxime carbon paste electrodes. Revista de Chimie (Bucharest), 55 (2004): 1–4.

    CAS  Google Scholar 

  381. S. Kilinc Alpat, Ü. Yuksel, and H. Akçay, Development of a novel carbon paste electrode containing a natural zeolite for the voltammetric determination of copper. Electrochemistry Communications, 7 (2005): 130–134.

    Article  CAS  Google Scholar 

  382. N. Liu and J. F. Song, Catalytic adsorptive stripping voltammetric determination of copper(II) on a carbon paste electrode. Analytical and Bioanalytical Chemistry, 383 (2005): 358–364.

    Article  CAS  Google Scholar 

  383. E. C. Canpolat, E. Sar, N. Y. Coskun, and H. Cankurtaran, Determination of trace amounts of copper in tap water samples with a calix[4] arene modified carbon paste electrode by differential pulse anodic stripping voltammetry. Electroanalysis, 19 (2007): 1109–1115.

    Article  CAS  Google Scholar 

  384. J. H. Yoon, G. Muthuraman, S. B. Yoon, and M. S. Won, Pt-nanoparticle incorporated carbon paste electrode for the determination of Cu(II) ion by anodic stripping voltammetry. Electroanalysis, 19 (2007): 1160–1166.

    Article  CAS  Google Scholar 

  385. B. C. Janegitz, L. H. Marcolino, and O. Fatibello Filho, Anodic stripping voltammetric determination of copper (II) in wastewaters using a carbon paste electrode modified with chitosan. Quimica Nova 30 (2007): 1673–1676.

    CAS  Google Scholar 

  386. M. A. Taher, M. Esfandyarpour, S. Abbasi, and A. Mohadesi, Indirect determination of trace copper(II) by adsorptive stripping voltammetry with zincon at a carbon paste electrode. Electroanalysis, 20 (2008): 374–278.

    Article  CAS  Google Scholar 

  387. H. M. Abu Shawish, S. M. Saadeh, and A. R. Hussein, Enhanced sensitivity for Cu(II) ions by a salicylidine-functionalized polysiloxane carbon paste electrode. Talanta, 76 (2008): 941–948.

    Article  CAS  Google Scholar 

  388. S. K. Alpat, S. Alpat, B. Kutlu, O. Ozbayrak, and H. B. Buyukisik, Development of biosorption-based algal biosensor for Cu(II) using Tetraselmis chuii. Sensors & Actuators B, Chemical; 128 (2008): 273–278.

    Article  CAS  Google Scholar 

  389. K. H. Lubert and L. Beyer, Carbon paste electrode modified with the copper(II) complex of N-benzoyl-N′,N′-Di-N-butyl-thiourea—voltammetric behavior and response to copper(II). Solvent Extraction and Ion Exchange, 26 (2008): 321–331.

    Article  CAS  Google Scholar 

  390. G. Marino, M. F. Bergamini, M. F. S. Teixeira, and E. T. G. Cavalheiro, Evaluation of a carbon paste electrode modified with organofunctionalized amorphous silica in the cadmium determination in a differential pulse anodic stripping voltammetric procedure. Talanta, 59 (2003): 1021–1028.

    Article  CAS  Google Scholar 

  391. E. Shams and R. Torabi, Determination of nanomolar concentrations of cadmium by anodicstripping voltammetry at a carbon paste electrode modified with zirconium phosphated amorphous silica. Sensors & Actuators B, Chemical; 117 (2006): 86–92.

    Article  CAS  Google Scholar 

  392. I. Cesarino, G. Marino, J. D. R. Matos, and E. T. G. Cavalheiro, Using the organofunctionalised SBA-15 nanostructured silica as a carbon paste electrode modifier: Determination of cadmium ions by differential anodic pulse stripping voltammetry. Journal of Brazilian Chemical Society, 18 (2007): 810–817.

    CAS  Google Scholar 

  393. M. H. Mashhadizadeh, K. Eskandari, A. Foroumadi, and A. Shafiee, Self-assembled mercapto-compound-gold-nanoparticle-modified carbon paste electrode for potentiometric determination of cadmium(II). Electroanalysis, 20 (2008): 1891–1896.

    Article  CAS  Google Scholar 

  394. Y.-F. Kuang, J.-L. Zou, L.-Z. Ma, Y.-J. Feng, and P.-H. Deng, Determination of trace Cd(II) in water sample using 1,10-phenanthroline-5,6-dione modified carbon paste electrode. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 36 (2008): 103–106.

    CAS  Google Scholar 

  395. K. Fanta and B. S. Chandravanshi, Differential pulse anodic stripping voltammetric determination of cadmium(II) with N-p-chlorophenylcinnamohydroxamic acid modified carbon paste electrode. Electroanalysis, 13 (2001): 484–492.

    Article  CAS  Google Scholar 

  396. W. Yantasee, Y.-H. Lin, G. E. Fryxell, and B. J. Busche, Simultaneous detection of cadmium, copper, and lead using a carbon paste electrode modified with carbamoyl-phosphonic acid self-assembled monolayer on mesoporous silica (SAMMS). Analytica Chimica Acta, 502 (2004): 207–212.

    Article  CAS  Google Scholar 

  397. I. Adraoui, M. E. Rhazi, and A. Amine, Fibrinogencoated bismuth film electrodes for voltammetric analysis of lead and cadmium using the batch injection analysis. Analytical Letters, 40 (2007): 349–368.

    Article  CAS  Google Scholar 

  398. L.-Y. Cao, J.-B. Jia, and Z.-H. Wang, Sensitive determination of cadmium and lead by using differential pulse stripping voltammetry with in-situ bismuth-modified zeolite doped carbon paste electrodes. Electrochimica Acta, 53 (2008): 2177–2182.

    Article  CAS  Google Scholar 

  399. C.-G. Hu, K.-B. Wu, X. Dai, and S.-S. Hu, Simultaneous determination of lead(II) and cadmium(II) at a diacetyl-dioxime modified carbon paste electrode by differential pulse stripping voltammetry. Talanta, 60 (2003): 17–24.

    Article  CAS  Google Scholar 

  400. M. G. Roa, S. M. T. Ramirez, M. A. R. Romero, and L. Galicia, Determination of lead and cadmium using a poly-cyclodextrin-modified carbon paste electrode with anodic stripping voltammetry. Analytical and Bioanalytical Chemistry, 377 (2003): 763–769.

    Article  CAS  Google Scholar 

  401. V. S: Ijeri and A. K. Srivastava, Voltammetric determination of lead at chemically modified electrodes based on crown ethers. Analytical Sciences (Japan), 17 (2001): 605–608.

    Article  CAS  Google Scholar 

  402. W. Yantasee, Y. H. Lin, T. S. Zemanian, and G. E. Fryxell, Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst (UK), 128 (2003): 467–462.

    Article  CAS  Google Scholar 

  403. W. Ouangpipat, T. Lelasattarathkul, C. Dongduen, and S. Liawruangrath, Bioaccu-mulation and determination of lead using treated-pennisetum-modified carbon paste electrode. Talanta, 61 (2003): 455–464.

    Article  CAS  Google Scholar 

  404. S. Majid, M. El Rhazi, A. Amine, A. Curulli, and G. Palleschi, Carbon paste electrode bulkmodified with the conducting polymer poly(1,8-diaminonaphthalene): Application to lead determination. Microchimica Acta, 143 (2003): 195–204.

    Article  CAS  Google Scholar 

  405. A. Rahmani, M. F. Mousavi, S. M. Golabi, M. Shamsipur, H. Sharghi, Voltammetric determination of lead(II) using chemically modified carbon paste with bis[1-hydroxy-9,10,-anthraquinone-2-methyl]sulfide. Chemia Analyticzna (Warsaw), 49 (2004): 359–368.

    CAS  Google Scholar 

  406. I. Adraoui, M. El Rhazi, A. Amine, L. Idrissi, A. Curulli, and G. Palleschi, Lead determination by anodic stripping voltammetry using a p-phenylenediamine modified carbon paste electrode. Electroanalysis, 17 (2005): 685–693.

    Article  CAS  Google Scholar 

  407. E. Shams, F. Alibeygi, and R. Torabi, Determination of nanomolar concentrations of Pb(II) using carbon paste electrode modified with zirconium phosphated amorphous silica. Electroanalysis, 18 (2006): 773–778.

    Article  CAS  Google Scholar 

  408. R. Torabi, E. Shams, M. A. Zolfigol, and S. Afshar, Anodic stripping voltammetric determination of lead(II) with a 2-aminopyridinated-silica modified carbon paste electrode. Analytical Letters, 39 (2006): 2643–2655.

    Article  CAS  Google Scholar 

  409. M. D. Vásquez, M. L. Tascón, L. Deban, Determination of Pb(II) with a dithizone-modified carbon paste electrode. Journal of Enviromental Sciences, 41 (2006): 2735–274

    Google Scholar 

  410. R. E. Mojica Elmer, S. P. Gomez, J. R. L. Micor, and C. C. Deocaris, Lead detection using a pineapple bioelectrode. Philippine Agricultural Sciences, 89 (2006): 134–140.

    Google Scholar 

  411. M. Ghlaci, B. Rezaei, and R. J. Kalbasi, High selective SiO2-Al2O3 mixed-oxide modified carbon paste electrode for anodic stripping voltammetric determination of Pb(II). Talanta, 73 (2007): 37–45.

    Article  CAS  Google Scholar 

  412. D. Sun, C.-D. Wan, G. Li, and K.-B. Wu, Electrochemical determination of lead(II) using a montmorillonite calcium-modified carbon paste electrode. Microchimica Acta, 158 (2007): 255–260.

    Article  CAS  Google Scholar 

  413. M. B. Gholivand and M. Malekian, Determination of trace amount of lead(II) in sweet fruit-flavored powder drinks by differential pulse adsorptive stripping voltammetry at carbon paste electrode. Electroanalysis, 20 (2008): 367–373.

    Article  CAS  Google Scholar 

  414. T. Mikysek, I. Švancara, K. Vytřas, and B. G. Banica, F. G, Functionalised resin-modified carbon paste sensor for the voltammetric determination of Pb(II) within a wide concentration range. Electrochemistry Communications, 10 (2008): 242–245.

    Article  CAS  Google Scholar 

  415. R. Y. A. Hassan, I. H. I. Habib, and H. N. A. Hassan, Voltammetric determination of lead (II) in medical lotion and biological samples ising chitosan-carbon paste electrode. International Journal of Electrochemical Sciences, 3 (2008): 935–945.

    CAS  Google Scholar 

  416. J. Konvalina, Carbon Paste Electrodes in Stripping Potentiometry, Dissertation Thesis (in Czech). (Pardubice: University of Pardubice, 2001), pp. 75–85.

    Google Scholar 

  417. H.-Q. Xie, Y.-H. Li, F.-Q. Zhou, H.-S. Guo, and B. Yi, Determination of trace tin by adsorptive voltammetry at an alizarin violet modified carbon paste electrode. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 29 (2001): 822–824.

    CAS  Google Scholar 

  418. Y.-H. Li, H.-Q. Xie, F.-Q. Zhou, and H. S. Guo, Determination of trace tin by anodic stripping voltammetry at a carbon paste electrode. Electroanalysis, 18 (2006): 976–980.

    Article  CAS  Google Scholar 

  419. W.-S. Huang, Voltammetric determination of bismuth in water and nickel metal samples with a sodium montmoril-lonite (SWy-2) modified carbon paste electrode. Microchimica Acta, 14 (2004): 125–129.

    Article  CAS  Google Scholar 

  420. H.-S. Guo, Y.-H. Li, P.-F. Xiao, and N.-Y. He, Determination of trace amount of bismuth(III) by adsorptive anodic stripping voltammetry at carbon paste electrode. Analytica Chimica Acta, 534 (2005): 143–147.

    Article  CAS  Google Scholar 

  421. H.-S. Guo, Y.-H. Li, X.-K. Chen, L.-B. Nie and N.-Y. He, Determination of trace antimony(III) by adsorption stripping voltammetry at carbon paste electrode. Sensors, 5 (2005): 284–292.

    Article  CAS  Google Scholar 

  422. D. Watanabe, T. Furuike, M. Midorikawa, and T. Tanaka, Simultaneous determination of copper and antimony by differential pulse anodic stripping voltammetry with a carbon-paste electrode. Bunseki Kagaku (Japan Analyst), 54 (2005): 907–912.

    Article  CAS  Google Scholar 

  423. C. D. Mattos, D. R. do Carmo, M. F. de Oliveira, and N. R. Stradiotto, Voltammetric determination of total iron in fuel ethanol using a 1,10-fenanthroline / Nafion carbon paste-modified electrode. International Journal of Electrochemical Science, 3 (2008): 338–345.

    Google Scholar 

  424. H. R. Pouretedal and M. H Keshavarz, Cyclam modified carbon paste electrode as a potentiometric sensor for determination of cobalt(II) ions. Gaodeng Xuexiao Huaxue Xuebao (Chemical Research in Chinese Universities), 21 (2005): 28–31.

    CAS  Google Scholar 

  425. M. M. Ardakani, Z. Akrami, H. Kazemian, and H. R. Zare, Accumulation and voltammetric determination of cobalt at zeolite-modified electrodes. Journal of Analytical Chemistry, 63 (2008): 184–191.

    CAS  Google Scholar 

  426. P. S. González, V. A. Cortínez, and C. A. Fontan, Determination of nickel by anodic adsorptive stripping voltammetry with a cation exchanger-modified carbon paste electrode. Talanta, 58 (2002): 679–690.

    Article  Google Scholar 

  427. T. F. Oliveira, M. F. de Oliveira, B. V. Roberto, and S. N Ramos, Determination of nickel in fuel ethanol using a carbon paste modified electrode containing dimethylglyoxime. Microchimica Acta, 155 (2006): 397–401.

    Article  CAS  Google Scholar 

  428. M. Galík, I. Švancara, and K. Vytřas, Stripping voltammetric determination of platinum metals at carbon paste electrodes modified with cationic surfactants; in Sensing in Electroanalysis, eds. K. Vytřas and K. Kalcher. (University of Pardubice, 2005), pp. 89–107.

  429. I. Švancara, M. Galík, and K. Vytřas, Stripping voltammetric determination of platinum metals at a carbon paste electrode modified with cationic surfactants. Talanta, 72 (2007): 512–518.

    Article  CAS  Google Scholar 

  430. B. Rezaei; M. Ghiaci, and M. E. Sedaghat, A selective modified bentonite-porphyrin carbon paste electrode for determination of Mn(II) by using anodic stripping voltammetry. Sensors & Actuators B, Chemical; 131 (2008): 439–447.

    Article  CAS  Google Scholar 

  431. M. Rievaj, P. Tomčík, Z. Janošíková, D. Bustin, and R. G. Compton, Determination of trace Mn(II) in pharma-ceutical diet supplements by cathodic stripping voltammetry on bare carbon paste electrode. Chemia Analyticzna (Warsaw), 53 (2008): 153–161.

    CAS  Google Scholar 

  432. I. Švancara, P. Foret, and K. Vytřas, A Study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants. Talanta, 64 (2004): 844–852.

    Article  CAS  Google Scholar 

  433. A. M. Gevorgyan, S. V. Vakhnenko, and A. T. Artykov, Thick-film graphite-containing electrodes for determining selenium by stripping voltammetry. Journal of Analytical Chemistry, 59 (2004): 371–380.

    Article  CAS  Google Scholar 

  434. M. E. Sánchez Fernández, L. M. Cubillana Aguilera, J. M. Palacios Satander, I. Naranjo Rodríguez, and J. L. H. H. de Cisnéros, An oxidative procedure of the electrochemical determination of chromium(VI) using modified carbon paste electrodes. Bulletin of Electrochemistry, 21 (2005): 529–535.

    Google Scholar 

  435. X.-W. Zheng, Z.-J. Zhang, Q. Wang, and H.-C. Ding, Electrogenerated chemiluminescence determination of Mo(VI) based on its sensitizing effect in electrochemical reduction luminol. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 31 (2003): 1076–1078.

    CAS  Google Scholar 

  436. Y.-H. Li, Y.-X. Wang, and M.-H. Huang, Determination of trace vanadium by adsorptive stripping voltammetry at a carbon paste electrode. Electroanalysis, 20 (2008): 1440–1444.

    Article  CAS  Google Scholar 

  437. J.-N. Li, J. Zhang, P.-H. Deng, and J.- J. Fei, Carbon paste electrode for trace zirconium(IV) determination by adsorption voltammetry. Analyst (UK), 126 (2001): 2032–2035.

    CAS  Google Scholar 

  438. J.-N. Li, J. Zhang, P.-H. Deng, and Y.-Q. Peng, Adsorption voltammetry of the mix-polynuclear complex of zirconium-calcium-alizarin red S at a carbon paste electrode. Analytica Chimica Acta, 431 (2001): 81–87.

    Article  CAS  Google Scholar 

  439. Y.-H. Li, Q.-L. Zhao, and M.-H: Huang, Adsorptive anodic stripping voltammetry of zirconium(IV)-alizarin red S complex at a carbon paste electrode. Microchimica Acta, 157 (2007): 245–249.

    Article  CAS  Google Scholar 

  440. S.-M. Liu, J.-N. Li and X. Mao, Stripping voltammetric determination of zirconium with complexing preconcentration of zirconium(IV) at a morin-modified carbon paste electrode. Electroanalysis, 15 (2003): 1751–1755.

    Article  CAS  Google Scholar 

  441. S.-M. Liu, J.-N. Li, and X. Mao, Determination of zirconium by second-order derivative adsorption voltammetry of zirconium (IV)-morin complex at a carbon paste electrode. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 32 (2004): 195–197.

    Google Scholar 

  442. S. M. Liu, J.-N. Li, S.-J. Zhang, and J. Q. Zhao, Study on the adsorptive stripping voltammetric determination of trace cerium at a carbon paste electrode modified in situ with cetyltrimethylammonium bromide. Applied Surface Science, 252 (2005): 2078–2084.

    Article  CAS  Google Scholar 

  443. J.-N. Li, S.-M. Liu, Z.-H. Yan, X. Mao, and P. Gao, Determination of trace metals in industrial boron carbide by solid sampling optical emission spectrometry. Optimization of DC arc excitation. Microchimica Acta, 154 (2006): 241–243.

    Article  CAS  Google Scholar 

  444. M. Javanbakht, H. Khoshsafar, M. R. Ganjali, P. Norouzi, A Badei, and A. Hashe-minasa, Stripping voltammetry of Ce(III) with a chemically modified carbon paste electrode containing functionalized nanoporous silica gel. Electroanalysis, 20 (2008): 203–206.

    Article  CAS  Google Scholar 

  445. S.-M. Liu, L.-H. Yi, and J.-N. Li, Studies on anodic adsorptive stripping voltammetry of gallium(III)-alizarin complexone at carbon paste electrodes and its application. Chinese Journal of Analytical Chemistry, 31 (2003): 1489–1492.

    CAS  Google Scholar 

  446. Y.-H. Li, Q.-L. Zhao, and M.-H. Huang, Cathodic adsorptive voltammetry of gallium-alizarin red S complex at a carbon paste electrode. Electroanalysis, 17 (2005): 343–347.

    Article  CAS  Google Scholar 

  447. J. Zhang, J.-N. Li, and P.-H. Deng, Adsorption voltammetry of the scandium-alizarin red S complex onto a carbon paste electrode. Talanta, 54 (2001): 561–566.

    Article  CAS  Google Scholar 

  448. J.-N. Li, F.-Y. Yi, D.-S. Shen, and J. J. Fei, Adsorptive stripping voltammetric study of scandium-alizarin complexan complex at a carbon paste electrode. Analytical Letters, 35 (2002): 1361–1372.

    Article  CAS  Google Scholar 

  449. S.-M. Liu, J.-N. Li, and P. Gao, Anodic adsorptive stripping voltammetry at a carbon paste electrode for determination of trace thorium. Analytical Letters, 36 (2003): 1381–1392.

    Article  CAS  Google Scholar 

  450. J.-N. Li, F.-Y. Yi, Z.-M. Jiang, and J.-J. Fei, Adsorptive voltammetric study of Th(IV) alizarin complex at a carbon paste electrode. Microchimica Acta, 143 (2003): 287–292.

    Article  CAS  Google Scholar 

  451. K.-B. Ji and S.-S. Hu, Square wave voltammetric determination of trace amounts of europium(III) at montmoril-lonite-modified carbon paste electrodes. Collection of Czecho-slovak Chemical Communations, 69 (2004): 1590–1599.

    Article  CAS  Google Scholar 

  452. J.-N. Li, S.-M. Liu, X. Mao, P. Gao, and Z.-H. Yan, Trace determination of rare earths by adsorption voltammetry at a carbon paste electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 561 (2004): 137–142.

    Article  CAS  Google Scholar 

  453. O. A. Farghaly, A novel method for determination of magnesium in urine and water samples with mercury film-plated carbon paste electrode. Talanta, 63 (2004): 497–501.

    Article  CAS  Google Scholar 

  454. N. Liu and J.-F. Song, Determination of free calcium at a carbon paste electrode adsorptive stripping voltam-metric method. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 33 (2005): 1261–1264.

    CAS  Google Scholar 

  455. M. F. S. Teixeira, F. C. Moraes, O. F. Filho, and N. Bocchi, Voltammetric determination of lithium ions in pharma-ceutical formulation using a L-MnO2-modified carbon-paste electrode. Analytica Chimica Acta, 443 (2001): 249–255.

    Article  CAS  Google Scholar 

  456. M. F. S. Teixeira, F. C. Moraes, E. T. G. Cavalheiro, and N. Bocchi, Differential pulse anodic voltammetric determination of lithium ions in pharmaceutical formulations using a carbon paste electrode modified with spinel-type manganese oxide. Journal of Pharmaceutical and Biomedical Analysis, 31 (2003): 537–543.

    Article  CAS  Google Scholar 

  457. M. F. S. Teixeira, M. F. Bergamini, and N. Bocchi, Lithium ions determination by selective pre-concentration and differential pulse anodic stripping voltammetry using a carbon paste electrode modified with a spinel-type manganese oxid. Talanta, 62 (2004): 603–609.

    Article  CAS  Google Scholar 

  458. I. Szymanska, H. Radecka, J. Radecki, P. A. Gale, and C. N. Warriner, Ferrocene-substituted calix[4]pyrrole modified carbon paste electrodes for anion detection in water samples. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 591 (2006): 223–228.

    Article  CAS  Google Scholar 

  459. A. Walcarius, G. Lefévre, J. P. Rapin, G. Renaudin, and M. François, Voltammetric detection of iodide after accumulation by Friedel’s salt. Electroanalysis, 13 (2001): 313–320.

    Article  CAS  Google Scholar 

  460. Q. He, J.-J. Fei, and S. H. Hu, Voltammetric method based on an ion-pairing reaction for the determination of trace amount of iodide at carbon-paste electrodes. Analytical Sciences (Japan), 19 (2003): 681–686.

    Article  CAS  Google Scholar 

  461. H. Hamidi, E. Shams, B. Yadollahi, and F. K. Esfahani, Fabrication of bulk-modified carbon paste electrode containing α-PW12O40 3− polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis. Talanta, 74 (2008): 909–914.

    Article  CAS  Google Scholar 

  462. H. Wang, G. Xu, and S. Dong, Electrochemiluminescence of dichlorotris (1,10-phenanthroline) ruthenium(II) with peroxydisulfate in purely aqueous solution at carbon paste electrode. Microchemical Journal, 72 (2002): 43–48.

    Article  CAS  Google Scholar 

  463. J. B. Raoof, R. Ojani, and H. Karimi Maleh, Electrocatalytic determination of sulfite at the surface of new ferrocene derivative-modified carbon paste electrode. International Journal of Electrochemical Sciences, 2 (2007): 257–269.

    CAS  Google Scholar 

  464. J. B. Raoof, R. Ojani, and H. Karimi-Maleh, Electrocatalytic determination of sulfite using 1-[4-(ferrocenyl-ethynyl)phenyl]-1-ethanone modified carbon paste electrode. Asian Journal of Chemistry, 20 (2008): 483–494.

    CAS  Google Scholar 

  465. S. S. Kumar and S. S. Narayanan, Electrocatalytic oxidation of sulfite on a nickel aquapentacyanoferrate modified electrode: Application for simple and selective determination. Electroanalysis, 20 (2008): 1427–1433.

    Article  CAS  Google Scholar 

  466. J. C. Quintana, L. Idrissi, G. Palleschi, P. Albertano, A. Amine, M. El Rhazi, and D. Moscone, Investigation of amperometric detection of phosphate: Application in seawater and cyanobacterial biofilm samples. Talanta, 63 (2004): 567–574.

    Article  CAS  Google Scholar 

  467. Y. Xue, X.-W. Zheng, and G.-X. Li, Determination of phosphate in water by means of a new electrochemi-luminescence technique based on the combination of liquid-liquid extraction with benzene-modified carbon paste electrode. Talanta, 72 (2007): 450–456.

    Article  CAS  Google Scholar 

  468. V. M. Ivama and S. H. P. Serrano, Rhodium-prussian blue modified carbon paste electrode (Rh-PBMCPE) for amperometric detection of hydrogen peroxide. Journal of Brazilian Chemical Society, 14 (2003): 551–555.

    CAS  Google Scholar 

  469. C.-Y. Li, Y. Chen, C.-F. Wang, H.-B. Li, and Y.-Y. Chen, Electrocatalytic oxidation of H2O2 at a carbon paste electrode modified with a nickel (II)-5, 11, 17, 23-tetra-tert-butyl-25, 27-bis(Diethylcarbamoylmethoxy) calix[4]arene complex and its application. Wuhan University, Journal of Natural Sciences, 8 (2003): 857–860.

    CAS  Google Scholar 

  470. Y. H. Lin, X. L. Cui, and L. Y. Li, Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochemistry Communications, 7 (2005): 166–172.

    Article  CAS  Google Scholar 

  471. E. S. Ribeiro, S. L. P. Dias, Y. Gushikem, and L. T. Kubota, Cobalt(II) porphyrin complex immobilized on the binary oxide SiO2/Sb2O3: electrochemical properties and dissolved oxygen reduction study. Electrochimica Acta, 49 (2004): 829–834.

    Article  CAS  Google Scholar 

  472. Q. He, C.-G. Hu, X.-P. Dang, Y.-L. Wei, and S. Hua, Electrocatalytic reduction of dioxygen at cetyltrimethyl-ammonium bromide modified carbon paste electrode. Electro-chemistry, 72 (2004): 5–8.

    CAS  Google Scholar 

  473. M. P. Francisco, W. S. Cardoso, and Y. Gushikem, Carbon paste electrodes of the mixed oxide SiO2 / Nb2O5 prepared by sol-gel method: dissolved dioxygen sensor. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 574 (2005): 291–297.

    Article  CAS  Google Scholar 

  474. G.-H. Lu, D.-W. Long, T. Zhan, and H.-Y. Zhao, The electrochemical behavior of a ruthenium (II) — Polypyrindine complex and its electrocatalyis of nitrite. Fenxi Huaxue (Chinese Journal of Analytical Chemistry), 30 (2002): 1115–1118.

    CAS  Google Scholar 

  475. S.-Q. Liu and H.-X. Ju, Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and colloidal gold. Analyst (UK), 128 (2003): 1420–1424.

    Article  CAS  Google Scholar 

  476. M. Badea, A. Amine, M. Benzine, A. Curulli, D. Moscone, A. Lupu, G. Volpe, and G. Palleschi, Rapid and selective electrochemical determination of nitrite in cured meat in the presence of ascorbic acid. Microchimica Acta, 147 (2004): 51–58.

    Article  CAS  Google Scholar 

  477. W. S. Cardoso and Y. Gushikem, Electrocatalytic oxidation of nitrate on a carbon paste electrode modified with Co(II) porphyrion adsorbed on SiO2 / SnO2 / phosphate prepared by the sol-gel method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 583 (2005): 300–306.

    Article  CAS  Google Scholar 

  478. L. Idrissi, A. Amine, M. El Rhazi, and F. E. Cherkaoui, Electrochemical detection of ntrite based on the reaction with 2,3-diaminonaphthalene. Analytical. Letters, 38 (2005): 1943–1955.

    Article  CAS  Google Scholar 

  479. R. Ojani, J. B. Raoof, and E. Zarei, Electrocatalytic reduction of nitrite using ferricyanide: Application for its simple and selective determination. Electrochim. Acta, 52 (2006): 753–759.

    Article  CAS  Google Scholar 

  480. R. Ojani, J. B. Raoof, and E. Zarei, Poly(o-toluidine) modified carbon paste electrode: A sensor for electrocatalytic reduction of nitrite. Electroanalysis, 20 (2008): 379–385.

    Article  CAS  Google Scholar 

  481. R. Ojani, V. Rahmanifar, and P. Naderi, Electrocatalytic reduction of nitrite by phosphotungstic heteropolyanion. application for its simple and selective determination. Electroanalysis, 20 (2008): 1092–1098.

    Article  CAS  Google Scholar 

  482. M. A. Kamyabi and F. Aghajanloo, Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. Journal of Electroanalytical Chemistry and Interfacial Electro-chemistry, 614 (2008): 157–165.

    Article  CAS  Google Scholar 

  483. E. Casero, F. Pariente, E. Lorenzo, L. Beyer, and J. Losada, Electrocatalytic oxidation of nitric oxide at 6,17-diferrocenyldibenzo[b,i]5,9,14,18-tetraaza[14]annulen-Ni(II) modified electrodes. Electroanalysis, 13 (2001): 1411–1416.

    Article  CAS  Google Scholar 

  484. H. R. Zare and A. Nasirizadeh, Electrocatalytic characteristics of hydrazine and hydroxylamine oxidation at coumestan modified carbon paste electrode. Electroanalysis, 18 (2006): 507–512.

    Article  CAS  Google Scholar 

  485. C. A. Pessoa, Y. Gushikem, and S. Nagasaki, Cobalt porphyrin immobilized on a niobium(V) oxide grafted — silica gel surface: Study of the catalytic oxidation of hydrazine. Electroanalysis, 14 (2002): 1072–1076.

    Article  CAS  Google Scholar 

  486. S. T. Fujiwara, Y. Gushikem, C. A. Pessoa, and S. Nakagaki, Electrochemical studies of a new iron porphyrin entrapped in a propylpyridiniumsilsesquioxane polymer immobilized on a SiO2 / Al2O3 surface. Electroanalysis, 17 (2005): 783–788.

    Article  CAS  Google Scholar 

  487. W. Siangproh, O. Chailapakul, R. Laocharoensuk, and J. Wang, Microchip capillary electrophoresis / electro-chemical detection of hydrazine compounds at a cobalt phthalo-cyanine modified electrochemical detector. Talanta, 67 (2005): 903–907.

    Article  CAS  Google Scholar 

  488. A. Abbaspour and M. A. Kamyabi, Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 576 (2005): 73–83.

    Article  CAS  Google Scholar 

  489. J. B. Raoof, R. Ojani, and M. Ramine, Electrocatalytic oxidation and voltammetric determination of hydrazine on the tetrabromo-p-benzoquinone modified carbon paste electrode. Electroanalysis, 19 (2007): 597–603.

    Article  CAS  Google Scholar 

  490. C. D. C. Conceiçao, R. C. Faria, O. Fatibello, and A. A. Tanaka, Electrocatalytic oxidation and voltammetric determination of hydrazine in industrial boiler feed water using a cobalt phthalocyanine-modified electrode. Analytical Letters, 41 (2008): 1010–1021.

    Article  CAS  Google Scholar 

  491. Z. D. Chen and M. Hojo, Determination of phenol using a carbon paste electrode modified with overoxidized polypyrrole/polyvinylpyrrolidone films. Bunseki Kagaku, 56 (2007):669–673.

    Article  CAS  Google Scholar 

  492. X. Cheng, Q. J. Wang, S. Zhang, W. D. Zhang, P. G. He, and Y. Z. Fang, Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode. Talanta, 71 (2007):1083–1087.

    Article  CAS  Google Scholar 

  493. N. German, S. Armalis, J. Zima, and J. Barek, Voltammetric determination of fluoren-9-ol and 2-acetamidofluorene using carbon paste electrodes. Collection of Czechoslovak Chemical Communications, 70 (2005):292–304.

    Article  CAS  Google Scholar 

  494. S. Shahrokhian and M. Ghalkhani, Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine-nafion ion-pair as an electron mediator. Electrochimica Acta, 51 (2006):2599–2606.

    Article  CAS  Google Scholar 

  495. A. G. Angelikaki and S. T. Girousi, Sensitive detection of tetracycline, oxytetra-cycline, and chlortetracycline in the presence of copper(II) ions using a DNA-modified carbon paste electrode. Chemia Analityczna, 53 (2008):445–454.

    CAS  Google Scholar 

  496. J. Wang and X.-J. Zhang, Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Analytical Chemistry, 73 (2001):844–847.

    Article  CAS  Google Scholar 

  497. J. B. Raoof, R. Ojani, and A. Kiani, Apple-modified carbon paste electrode: A biosensor for selective determination of dopamine in pharmaceutical formulations. Bulletin of Electrochemistry, 21 (2005):223–228.

    CAS  Google Scholar 

  498. H. R. Zare, N. Nasirizadeh, M. Mazloum- Ardakani, and M. Namazian, Electrochemical properties and electro-catalytic activity of hematoxylin modified carbon paste electrode toward the oxidation of reduced nicotinamide adenine dinucleotide (NADH). Sensors and Actuators B-Chemical, 120 (2006):288–294.

    Article  CAS  Google Scholar 

  499. H. Qi, X.-X. Li, P. Chen, and C.-X. Zhang, Electrochemical detection of DNA hybridization based on polypyrrole/ss-DNA/multi-wall carbon nanotubes paste electrode. Talanta, 72 (2007):1030–1035.

    Article  CAS  Google Scholar 

  500. K. Jiao, Y. Ren, G. Y. Xu, and X. Z. Zhang, Voltammetric study on deoxyribonucleic acid immobilization and hybridization on stearic acid/ aluminum ion films and the detection of specific gene related to phosphinothricin acethyl-transferase gene from Bacillus Amyloliquefaciens gene. Chinese Journal of Analytical Chemistry, 33 (2005):1381–1384.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Švancara.

About this article

Cite this article

Švancara, I., Walcarius, A., Kalcher, K. et al. Carbon paste electrodes in the new millennium. cent.eur.j.chem. 7, 598–656 (2009). https://doi.org/10.2478/s11532-009-0097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-009-0097-9

Keywords

Navigation