Skip to main content
Log in

Effects of carbon nanofiber composites on electrode processes involving liquid|liquid ion transfer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Composite electrodes were prepared from chemical vapor deposition grown carbon nanofibers consisting predominantly of ca. 100 nm diameter fibers. A hydrophobic sol–gel matrix based on a methyl-trimethoxysilane precursor was employed and composites formed with carbon nanofiber or carbon nanofiber—carbon particle mixtures (carbon ceramic electrode). Scanning electron microscopy images and electrochemical measurements show that the composite materials exhibit high surface area with some degree of electrolyte solution penetration into the electrode. These electrodes were modified with redox probe solution in 2-nitrophenyloctylether. A second type of composite electrode was prepared by simple pasting of carbon nanofibers and the same solution (carbon paste electrode). For both types of electrodes it is shown that high surface area carbon nanofibers dominate the electrode process and enhance voltammetric currents for the transfer of anions at liquid|liquid phase boundaries presumably by extending the triple-phase boundary. Both anion insertion and cation expulsion processes were observed driven by the electro-oxidation of decamethylferrocene within the organic phase. A stronger current response is observed for the more hydrophobic anions like ClO 4 or PF 6 when compared to that for the more hydrophilic anions like F and SO 2−4 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banks CE, Davies TJ, Evans RG, Hignett G, Wain AJ, Lawrence NS, Wadhavan JD, Marken F, Compton RG (2003) Phys Chem Chem Phys 5:4053

    Article  CAS  Google Scholar 

  2. Scholz F, Gulaboski R (2005) Chem Phys Chem 6:16

    PubMed  CAS  Google Scholar 

  3. Scholz F, Schröder U, Gulaboski R (2005) The electrochemistry of immobilised particles and droplets. Springer-Verlag, Berlin, Germany

    Google Scholar 

  4. Bouchard G, Galland A, Carrupt PA, Gulaboski R, Mirceski V, Scholz F, Girault HH (2003) Phys Chem Chem Phys 5:3478

    Article  CAS  Google Scholar 

  5. Wadhawan JD, Compton RG, Marken F, Bull SD, Davies SG (2001) J Solid State Electrochem 5:301

    Article  CAS  Google Scholar 

  6. Davies TJ, Garner AC, Davies SG, Compton RG (2004) J Electroanal Chem 570:171

    Article  CAS  Google Scholar 

  7. Marken F, Webster RD, Bull SD, Davies SG (1997) J Electroanal Chem 437:209

    Article  CAS  Google Scholar 

  8. Scholz F, Komorsky-Lovric S, Lovric M (2001) Electrochem Commun 3:112

    Google Scholar 

  9. Bak E, Donten M, Stojek Z (2005) Electrochem Commun 7:483

    Article  CAS  Google Scholar 

  10. Opallo M, Saczek-Maj M (2001) Electrochem Commun 3:306

    Article  CAS  Google Scholar 

  11. Opallo M, Saczek-Maj M (2002) Chem Commun 448

  12. Shul G, Opallo M (2005) Electrochem Commun 7:194

    Article  CAS  Google Scholar 

  13. Niedziolka J, Opallo M (2004) Electrochem Commun 6:475

    Article  CAS  Google Scholar 

  14. Niedziolka J, Nowakowski R, Palys B, Opallo M (2005) J Electroanal Chem 578:239

    Article  CAS  Google Scholar 

  15. Stott SJ, McKenzie KJ, Mortimer RJ, Hayman CM, Buckley BR, Bulman Page PC, Marken F, Shul G, Opallo M (2004) Anal Chem 76:5364

    Article  PubMed  CAS  Google Scholar 

  16. McKenzie KJ, Marken F, Shul G, Opallo M (2005) Farad Discuss 76:5364

    Google Scholar 

  17. Niedziolka J, Marken F, Opallo M in preparation

  18. McKenzie KJ, Niedziolka J, Paddon CA, Marken F, Rozniecka E, Opallo M (2004) Analyst 129:1181

    Article  PubMed  CAS  Google Scholar 

  19. Marken F, Gerrard MI, Mellor IM, Mortimer RJ, Madden CE, Fletcher S, Holt K, Ford JS, Dahm RH, Page F (2001) Electrochem Commun 3:177

    Article  CAS  Google Scholar 

  20. Van Dijk N, Fletcher S, Madden CE, Marken F (2001) Analyst 126:1878

    Article  PubMed  CAS  Google Scholar 

  21. Murphy MA, Wilcox GD, Dahm RH, Marken FM (2005) Indian J Chem 44:924

    Google Scholar 

  22. Murphy MA, Wilcox GD, Dahm RH, Marken F (2003) Electrochem Commun 5:51

    Article  CAS  Google Scholar 

  23. Murphy MA, Marken F, Mocak J (2003) Electrochim Acta 48:3411

    Article  CAS  Google Scholar 

  24. Gong K, Zhang M, Yan Y, Su L, Mao L, Xiong S, Chen Y (2004) Anal Chem 76:6500

    Article  PubMed  CAS  Google Scholar 

  25. Tsionsky M, Gun G, Glezer V, Lev O (1994) Anal Chem 66:1747

    Article  CAS  Google Scholar 

  26. Rabinovich L, Lev O (2001) Electroanalysis 13:265

    Article  CAS  Google Scholar 

  27. Shul G, Opallo M, Marken F (2005) Electrochim Acta 50:2315

    Article  CAS  Google Scholar 

  28. Scholz F (2002) Electroanalytical methods. Springer, Berlin, p 64

    Google Scholar 

  29. Schröder U, Compton RG, Marken F, Bull SD, Davies SG, Gilmour S (2001) J Phys Chem B 105:1344

    Article  CAS  Google Scholar 

  30. Donten M, Stojek Z, Scholz F (2002) Electrochem Commun 4:324

    Article  CAS  Google Scholar 

  31. http://dcwww.epfl.ch/cgi.bin/LE/DB/InterrDB.pl

  32. Gulaboski R, Galland A, Bouchard G, Caban K, Kretschmer A, Carrupt PA, Stojek Z, Girault HH, Scholz F (2004) J Phys Chem B 108:4565

    Article  CAS  Google Scholar 

  33. Wilke S, Zerihun T (2001) J Electroanal Chem 515:52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was partially supported by Polish Committee for Scientific Research (research project 3 T09A 019 26). Also, the support from Polish–British Partnership Programme sponsored by British Council and Committee for Scientific Research (project WAR/314/248) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Opallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shul, G., Murphy, M.A., Wilcox, G.D. et al. Effects of carbon nanofiber composites on electrode processes involving liquid|liquid ion transfer. J Solid State Electrochem 9, 874–881 (2005). https://doi.org/10.1007/s10008-005-0037-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0037-3

Keywords

Navigation