Skip to main content
Log in

Measuring mercury ion concentration with a carbon nano tube paste electrode using the cyclic voltammetry method

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A simply prepared carbon nano tube paste electrode (CNTPE) was utilized for monitoring mercury ion concentration using the cyclic voltammetry (CV) method and the square wave anodic stripping voltammetric (SWASV) method. The CNTPE was compared with various conventional electrodes. The CNTPE method was applied to determine the concentration of trace levels of Hg(II) in several water samples, which yielded a relative error of 0.6% with a concentration of 0.20 mg L−1 Hg(II). It was deposited at −0.5 V (vs Ag/AgCl), which was subsequently reduced to +0.20 V to strip it on the CNTPE. The optimal experimental conditions for the analysis were found to be as follows: pH value of 4 for the medium; deposition potential of −0.5 V; deposition time of 210 s; SW frequency of 40 Hz; SW amplitude of 100 mV, and step potential of 25 mV. Given these optimum conditions, a linear range was observed within the concentrations of 1.0–25.0 μg L−1 and 40.0–200.0 μg L−1. The detection limit was found to be 0.42 μg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Horvat J. Kotnik M. Logar V. Fajon T. Zvonari N. Pirrone (2003) Atmos. Environ. 1 S93 Occurrence Handle10.1016/S1352-2310(03)00249-8

    Article  Google Scholar 

  2. C.F. Harrington S.A. Merson T.M. D’ Silva (2004) Anal. Chim. Acta 505 247 Occurrence Handle10.1016/j.aca.2003.10.046 Occurrence Handle1:CAS:528:DC%2BD2cXhtVKnsrk%3D

    Article  CAS  Google Scholar 

  3. J.D. Laumb S.A. Benson E.A. Olson (2004) Fuel Process. Technol. 85 577 Occurrence Handle1:CAS:528:DC%2BD2cXjtFCqsbw%3D

    CAS  Google Scholar 

  4. E.M. Sunderland G.L. Chmura (2000) Sci. Total Environ. 256 39 Occurrence Handle1:CAS:528:DC%2BD3cXjs1WjurY%3D Occurrence Handle10898386

    CAS  PubMed  Google Scholar 

  5. L.D. Lacerda R.V. Marins (1997) J. Geochem. Explor. 58 223 Occurrence Handle1:CAS:528:DyaK2sXjvVWjur0%3D

    CAS  Google Scholar 

  6. R.D. Riso M. Waeles P. Monbet C.J. Chaumery (2000) Anal. Chim. Acta 410 97 Occurrence Handle1:CAS:528:DC%2BD3cXitVSmu7c%3D

    CAS  Google Scholar 

  7. S. Sholupov S. Pogarev V. Ryzhov N. Mashyanov A. Stroganov (2004) Fuel Process. Technol. 85 473 Occurrence Handle1:CAS:528:DC%2BD2cXjtFCqs7s%3D

    CAS  Google Scholar 

  8. L.M. Dong X.P. Yan Yan Li Y. Jiang S.W. Wang D.Q. Jiang (2004) J. Chromatogr. 1036 119 Occurrence Handle1:CAS:528:DC%2BD2cXjtFantbo%3D

    CAS  Google Scholar 

  9. L.N. Liang G.B. Jiang J.F. Liu J.T. Hu (2003) Anal. Chim. Acta 477 131 Occurrence Handle1:CAS:528:DC%2BD38Xpslais70%3D

    CAS  Google Scholar 

  10. G. Centineo E.B. Gonzalez A.S. Medel (2004) J. Chromatogr. 1034 191 Occurrence Handle1:CAS:528:DC%2BD2cXisVGhtrs%3D

    CAS  Google Scholar 

  11. H. Matusiewicz R.E. Sturgeon (1996) Spectrochim. Acta 51 377

    Google Scholar 

  12. W. Wiyaratn M. Somasundrum W. Surareungchai (2004) Anal. Chem. 76 859 Occurrence Handle1:CAS:528:DC%2BD3sXhtVSiur%2FP Occurrence Handle14750886

    CAS  PubMed  Google Scholar 

  13. T.H. Lu J.F. Huang I.W. Sun (2001) Anal. Chim. Acta 21701 1

    Google Scholar 

  14. M. Paneli, H. Ouguenoune, F. David, A. Bolyos Anal. Chim. Acta (1995) 177.

  15. J. Wang J. Lu (2000) Electrochem. Commun. 2 390 Occurrence Handle1:CAS:528:DC%2BD3cXjvFWqtrc%3D

    CAS  Google Scholar 

  16. M.H. Pournaghi-Azar M.R. Ramazani (2002) Electroanalysis. 14 1203 Occurrence Handle1:CAS:528:DC%2BD38XnvFGitbw%3D

    CAS  Google Scholar 

  17. G.B. El-Hefnawey I.S. El-Hallag E.M. Ghoneim M.M. Ghoneim (2004) J. Pharmaceut. Biomed. Anal. 34 75 Occurrence Handle1:CAS:528:DC%2BD2cXltFSrug%3D%3D

    CAS  Google Scholar 

  18. S.Y. Ly J.I. Chae Y.S. Jung W.W. Jung H.J. Lee S.H. Lee (2004) Nahrung/Food 48 201 Occurrence Handle1:CAS:528:DC%2BD2cXmtlSnsr8%3D

    CAS  Google Scholar 

  19. S.Y. Ly D.H. Kim M.H. Kim (2002) Talanta 58 919 Occurrence Handle1:CAS:528:DC%2BD38XotVyqt78%3D

    CAS  Google Scholar 

  20. K.K. Shiu K. Shi (1998) Electroanalysis 10 959 Occurrence Handle1:CAS:528:DyaK1cXnslWmsr0%3D

    CAS  Google Scholar 

  21. J.M. Pingarr I. OrtizHernadez A. Gonzaez-Cortes P. Yanez-Sedeno (2001) Anal. Chim. Acta 439 281

    Google Scholar 

  22. M.J. Gonzalezdela Huebra P. Hernadez Y. Ballesteros L. Hernadez (2001) Talanta 54 1077 Occurrence Handle1:CAS:528:DC%2BD3MXkslGjsL8%3D

    CAS  Google Scholar 

  23. X. Zhang B. Ogorevc M. Rupnik M. Kreft R. Zorec (1999) Anal. Chim. Acta 378 135 Occurrence Handle1:CAS:528:DyaK1cXntVGjsL4%3D

    CAS  Google Scholar 

  24. J. Wang S.B. Hocevar B. Ogorevc (2004) Electrochem. Commun. 6 176 Occurrence Handle1:CAS:528:DC%2BD2cXksFamtQ%3D%3D

    CAS  Google Scholar 

  25. S. Lu K. Wu X. Dang S. Hu (2004) Talanta 63 653 Occurrence Handle1:CAS:528:DC%2BD2cXjvVKiu70%3D

    CAS  Google Scholar 

  26. J. Wang M. Musameh (2004) Anal. Chim. Acta 511 33 Occurrence Handle1:CAS:528:DC%2BD2cXjvVGhsr8%3D

    CAS  Google Scholar 

  27. S. Lu K. Wu X. Dang S. Hu (2004) Talanta 63 653 Occurrence Handle1:CAS:528:DC%2BD2cXjvVKiu70%3D

    CAS  Google Scholar 

  28. J. Li S. Liu X. Mao P. Gao Z. Yan (2004) J. Electroanal. Chem. 561 137 Occurrence Handle1:CAS:528:DC%2BD3sXptlCmur4%3D

    CAS  Google Scholar 

  29. P.C. Pandey S. Upadhyay B. Upadhyay (1997) Anal. Biochem. 252 136 Occurrence Handle1:CAS:528:DyaK2sXmsVWkt7w%3D Occurrence Handle9324951

    CAS  PubMed  Google Scholar 

  30. 30. J. Wang, U.A. Kirgoz, J.W. Mo, J. Lu, A.N. Kawde and A. Muck, Electrochem. Commun. (2001) 203

Download references

Acknowledgement

This work was supported by grant No. (R01-2003-000-10530-0) from Ministry of Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Min Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LY, S., Kim, S., Kim, T. et al. Measuring mercury ion concentration with a carbon nano tube paste electrode using the cyclic voltammetry method. J Appl Electrochem 35, 567–571 (2005). https://doi.org/10.1007/s10800-005-2058-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-2058-0

Key words:

Navigation