Skip to main content

Advertisement

Log in

Recent progress in carbon-based materials for supercapacitor electrodes: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Increased energy consumption stimulates the development of various energy types. As a result, the storage of these different types of energy becomes a key issue. Supercapacitors, as one important energy storage device, have gained much attention and owned a wide range of applications by taking advantages of micro-size, lightweight, high power density and long cycle life. From this perspective, numerous studies, especially on electrode materials, have been reported and great progress in the advancement in both the fundamental and applied fields of supercapacitor has been achieved. Herein, a review of recent progress in carbon materials for supercapacitor electrodes is presented. First, the two mechanisms of supercapacitors are briefly introduced. Then, research on carbon-based material electrodes for supercapacitor in recent years is summarized, including different dimensional carbon-based materials and biomass-derived carbon materials. The characteristics and fabrication methods of these materials and their performance as capacitor electrodes are discussed. On the basis of these materials, many supercapacitor devices have been developed. Therefore, in the third part, the supercapacitor devices based on these carbon materials are summarized. A brief overview of two types of conventional supercapacitor according to the charge storage mechanism is compiled, including their development process, the merits or withdraws, and the principle of expanding the potential range. Additionally, another fast-developed capacitor, hybrid ion capacitors as a good compromise between battery and supercapacitor are also discussed. Finally, the future aspects and challenges on the carbon-based materials as supercapacitor electrodes are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828. https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  2. Poonam Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825. https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  3. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25(4):1419–1445. https://doi.org/10.1007/s11581-019-02874-0

    Article  CAS  Google Scholar 

  4. Wu Y, Cao C (2018) The way to improve the energy density of supercapacitors: progress and perspective. Sci China Mater 61(12):1517–1526. https://doi.org/10.1007/s40843-018-9290-y

    Article  CAS  Google Scholar 

  5. Yu GH, Xie X, Pan LJ, Bao ZN, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2):213–234. https://doi.org/10.1016/j.nanoen.2012.10.006

    Article  CAS  Google Scholar 

  6. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262. https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  7. Zhang X, Zhang H, Lin Z, Yu M, Lu X, Tong Y (2016) Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater 59(6):475–494. https://doi.org/10.1007/s40843-016-5061-1

    Article  CAS  Google Scholar 

  8. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531. https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  9. Wu S, Zhu Y (2017) Highly densified carbon electrode materials towards practical supercapacitor devices. Sci China Mater 60(1):25–38. https://doi.org/10.1007/s40843-016-5109-4

    Article  CAS  Google Scholar 

  10. Li K, Zhang J (2018) Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci China Mater 61(2):210–232. https://doi.org/10.1007/s40843-017-9154-2

    Article  CAS  Google Scholar 

  11. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  12. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88. https://doi.org/10.1039/c2nr32040a

    Article  CAS  Google Scholar 

  13. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  14. Zhang L, Du W, Nautiyal A, Liu Z, Zhang X (2018) Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater 61(3):303–352. https://doi.org/10.1007/s40843-017-9206-4

    Article  CAS  Google Scholar 

  15. Wang H, Cui Y (2019) Nanodiamonds for energy. Carbon. Energy 1(1):13–18. https://doi.org/10.1002/cey2.9

    Article  Google Scholar 

  16. Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen C-M (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045. https://doi.org/10.1039/c9ta04436a

    Article  CAS  Google Scholar 

  17. Helmholtz H (1853) Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys 165(6):211–233. https://doi.org/10.1002/andp.18531650603

    Article  Google Scholar 

  18. Guoy G (1910) Constitution of the electric charge at the surface of an electrolyte. J Physique 9:457–467

    Google Scholar 

  19. Chapman DL (1913) LI. A contribution to the theory of electrocapillarity. Lond Edinb Dublin Philos Mag J Science 25(148):475–481. https://doi.org/10.1080/14786440408634187

    Article  Google Scholar 

  20. Stern O (1924) The theory of the electrolytic double-layer. Z Elektrochem 30(508):1014–1020

    Google Scholar 

  21. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66(1):1–14. https://doi.org/10.1016/S0378-7753(96)02474-3

    Article  CAS  Google Scholar 

  22. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614. https://doi.org/10.1039/C3EE44164D

    Article  CAS  Google Scholar 

  23. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18):9233–9280. https://doi.org/10.1021/acs.chemrev.8b00252

    Article  CAS  Google Scholar 

  24. Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat Mater 12(6):518–522. https://doi.org/10.1038/nmat3601

    Article  CAS  Google Scholar 

  25. Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62. https://doi.org/10.1002/adma.200903328

    Article  CAS  Google Scholar 

  26. Barbieri O, Hahn M, Herzog A, Kötz R (2005) Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6):1303–1310. https://doi.org/10.1016/j.carbon.2005.01.001

    Article  CAS  Google Scholar 

  27. Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T (2007) Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores. J Phys Chem C 111(1):227–233. https://doi.org/10.1021/jp063902g

    Article  CAS  Google Scholar 

  28. Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T (2004) Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material. Electrochem Solid-State Lett 7(8):A221–A223. https://doi.org/10.1149/1.1756491

    Article  CAS  Google Scholar 

  29. Moriguchi I, Nakawara F, Yamada H, Kudo T (2005) Electrical double-layer capacitive properties of colloidal crystaltemplated nanoporous carbons. In: Sayari A, Jaroniec M (eds) Studies in surface science and catalysis, vol 156. Elsevier, Amsterdam, pp 589–594 10.1016/S0167-2991(05)80260-5

    Google Scholar 

  30. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280. https://doi.org/10.1039/C3EE43525C

    Article  CAS  Google Scholar 

  31. Jurewicz K, Vix-Guterl C, Frackowiak E, Saadallah S, Reda M, Parmentier J, Patarin J, Béguin F (2004) Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J Phys Chem Solids 65(2):287–293. https://doi.org/10.1016/j.jpcs.2003.10.024

    Article  CAS  Google Scholar 

  32. Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49(6):905–912. https://doi.org/10.1016/j.electacta.2003.09.043

    Article  CAS  Google Scholar 

  33. Fernández JA, Morishita T, Toyoda M, Inagaki M, Stoeckli F, Centeno TA (2008) Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J Power Sources 175(1):675–679. https://doi.org/10.1016/j.jpowsour.2007.09.042

    Article  CAS  Google Scholar 

  34. Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, Hu N, Lu L (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep 7(1):44562. https://doi.org/10.1038/srep44562

    Article  CAS  Google Scholar 

  35. Zhang W, Song Y, Wang Y, He S, Shang L, Ma R, Jia L, Wang H (2020) A perylenetetracarboxylic dianhydride and aniline-assembled supramolecular nanomaterial with multi-color electrochemiluminescence for a highly sensitive label-free immunoassay. J Mater Chem B 8(16):3676–3682. https://doi.org/10.1039/c9tb02368b

    Article  CAS  Google Scholar 

  36. Yang XT, Liang ZG, Yuan YJ, Yang JL, Xia H (2017) Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica 66(4):8. https://doi.org/10.7498/aps.66.048101

    Article  CAS  Google Scholar 

  37. Li G, Gao XZ, Wang KY, Cheng ZJ (2018) Porous carbon nanospheres with high EDLC capacitance. Diamond Relat Mater 88:12–17. https://doi.org/10.1016/j.diamond.2018.06.010

    Article  CAS  Google Scholar 

  38. Wang J, Shen L, Ding B, Nie P, Deng H, Dou H, Zhang X (2014) Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Adv 4(15):7538–7544. https://doi.org/10.1039/C3RA44305A

    Article  CAS  Google Scholar 

  39. Guo D, Xa Chen, Fang Z, He Y, Zheng C, Yang Z, Yang K, Chen Y, Huang S (2015) Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. Electrochim Acta 176:207–214. https://doi.org/10.1016/j.electacta.2015.07.032

    Article  CAS  Google Scholar 

  40. Qu H, Zhang X, Zhan J, Sun W, Si Z, Chen H (2018) Biomass-based nitrogen-doped hollow carbon nanospheres derived directly from glucose and glucosamine: structural evolution and supercapacitor properties. ACS Sustain Chem Eng 6(6):7380–7389. https://doi.org/10.1021/acssuschemeng.7b04842

    Article  CAS  Google Scholar 

  41. Yao L, Chen DM, Yan S, Lin JJ, Liu YP, Lian J, Liu YR, Lin HL, Han S (2019) A facile synthesis of nitrogen-doped porous carbon materials for high-performance supercapacitors. Chemistryselect 4(9):2726–2733. https://doi.org/10.1002/slct.201803808

    Article  CAS  Google Scholar 

  42. Benkstein KD, Kopidakis N, van de Lagemaat J, Frank AJ (2003) Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107(31):7759–7767. https://doi.org/10.1021/jp022681l

    Article  CAS  Google Scholar 

  43. Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108(24):8106–8118. https://doi.org/10.1021/jp0359283

    Article  CAS  Google Scholar 

  44. Baxter JB, Aydil ES (2005) Nanowire-based dye-sensitized solar cells. Appl Phys Lett 86(5):053114. https://doi.org/10.1063/1.1861510

    Article  CAS  Google Scholar 

  45. Pan H, Li J, Feng Y (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5(3):654–668. https://doi.org/10.1007/s11671-009-9508-2

    Article  CAS  Google Scholar 

  46. Chen C, Mo M, Chen W, Pan M, Xu Z, Wang H, Li D (2018) Highly conductive nanocomposites based on cellulose nanofiber networks via NaOH treatments. Compos Sci Technol 156:103–108. https://doi.org/10.1016/j.compscitech.2017.12.029

    Article  CAS  Google Scholar 

  47. Chen C, Wang Y, Meng T, Wu Q, Fang L, Zhao D, Zhang Y, Li D (2019) Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers. Cellulose 26(16):8843–8851. https://doi.org/10.1007/s10570-019-02710-8

    Article  CAS  Google Scholar 

  48. Yoon BJ, Jeong SH, Lee KH, Kim HS, Park CG, Han JH (2004) Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 388(1–3):170–174. https://doi.org/10.1016/j.cplett.2004.02.071

    Article  CAS  Google Scholar 

  49. Wen S, Jung M, Joo O-S, Mho S-i (2006) EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates. Curr Appl Phys 6(6):1012–1015. https://doi.org/10.1016/j.cap.2005.07.008

    Article  Google Scholar 

  50. Xu B, Wu F, Su Y, Cao G, Chen S, Zhou Z, Yang Y (2008) Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: balance between porosity and conductivity. Electrochim Acta 53(26):7730–7735. https://doi.org/10.1016/j.electacta.2008.05.033

    Article  CAS  Google Scholar 

  51. Shah R, Zhang XF, Talapatra S (2009) Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals. Nanotechnology 20(39):5. https://doi.org/10.1088/0957-4484/20/39/395202

    Article  CAS  Google Scholar 

  52. Jung DW, Lee CS, Park S, Oh ES (2011) Characterization of electric double-layer capacitors with carbon nanotubes directly synthesized on a copper plate as a current collector. Korean J Met Mater 49(5):419–424. https://doi.org/10.3365/kjmm.2011.49.5.419

    Article  CAS  Google Scholar 

  53. Zhang H, Cao G, Yang Y, Gu Z (2008) Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. J Electrochem Soc 155(2):K19–K22. https://doi.org/10.1149/1.2811864

    Article  CAS  Google Scholar 

  54. Zhang Q, Cui ZL (2009) Synthesis and characterization of multi-branched carbon fibers and their proposed growth mechanism. J Dispers Sci Technol 30(7):1095–1099. https://doi.org/10.1080/01932690802550862

    Article  CAS  Google Scholar 

  55. Gong Q-m, Li Z, Zhou X-w, Wu J-j, Wang Y, Liang J (2005) Synthesis and characterization of in situ grown carbon nanofiber/nanotube reinforced carbon/carbon composites. Carbon 43(11):2426–2429. https://doi.org/10.1016/j.carbon.2005.04.024

    Article  CAS  Google Scholar 

  56. Qi Z, Lv X, Zhao W, Zhu S, Jiao J (2019) BN/SiC coating on SiC tows prepared by chemical vapor infiltration. IOP Conf Ser Mater Sci Eng 678:012062. https://doi.org/10.1088/1757-899X/678/1/012062

    Article  CAS  Google Scholar 

  57. Zhang W, Song Y, He SJ, Shang L, Ma RN, Jia LP, Wang HS (2019) Perylene diimide as a cathodic electrochemiluminescence luminophore for immunoassays at low potentials. Nanoscale 11(43):20910–20916. https://doi.org/10.1039/c9nr06812k

    Article  CAS  Google Scholar 

  58. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205–221. https://doi.org/10.1039/b809074m

    Article  CAS  Google Scholar 

  59. Tian J, Shi Y, Fan W, Liu T (2019) Ditungsten carbide nanoparticles embedded in electrospun carbon nanofiber membranes as flexible and high-performance supercapacitor electrodes. Compos Commun 12:21–25. https://doi.org/10.1016/j.coco.2018.12.003

    Article  Google Scholar 

  60. Li S, Cui Z, Li D, Yue G, Liu J, Ding H, Gao S, Zhao Y, Wang N, Zhao Y (2019) Hierarchically structured electrospinning nanofibers for catalysis and energy storage. Compos Commun 13:1–11. https://doi.org/10.1016/j.coco.2019.01.008

    Article  Google Scholar 

  61. Zhao R, Lu X, Wang C (2018) Electrospinning based all-nano composite materials: recent achievements and perspectives. Compos Commun 10:140–150. https://doi.org/10.1016/j.coco.2018.09.005

    Article  Google Scholar 

  62. Kim SY, Kim BH, Yang KS (2013) Electrochemical behavior of porous carbon nanofibers developed from polyacrylo-nitrile/graphene solutions containing zinc chloride. Curr Org Chem 17(13):1455–1462. https://doi.org/10.2174/1385272811317130012

    Article  CAS  Google Scholar 

  63. Barranco V, Lillo-Rodenas MA, Linares-Solano A, Oya A, Pico F, Ibanez J, Agullo-Rueda F, Amarilla JM, Rojo JM (2010) Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. J Phys Chem C 114(22):10302–10307. https://doi.org/10.1021/jp1021278

    Article  CAS  Google Scholar 

  64. Lee HM, An KH, Kim BJ (2014) Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers. Carbon Letters 15(2):146–150. https://doi.org/10.5714/cl.2014.15.2.146

    Article  Google Scholar 

  65. Hernandez-Hernandez E, Neira-Velazquez MG, Guerrero-Alvarado H, Hernandez-Gamez JF, Gonzalez-Morones P, Avila-Orta CA, Perera-Mercado YA, Borjas-Ramos JJ, Perez-Alvarez M, Ilina AD, Bartolo-Perez P (2015) Plasma functionalization of carbon nanofibers with vapors of ammonia/water. Plasma Chem Plasma Process 35(4):757–768. https://doi.org/10.1007/s11090-015-9613-1

    Article  CAS  Google Scholar 

  66. Jiang Q, Pang X, Geng S, Zhao Y, Wang X, Qin H, Liu B, Zhou J, Zhou T (2019) Simultaneous cross-linking and pore-forming electrospun carbon nanofibers towards high capacitive performance. Appl Surf Sci 479:128–136. https://doi.org/10.1016/j.apsusc.2019.02.077

    Article  CAS  Google Scholar 

  67. Liu X, Roberts A, Ahmed A, Wang ZX, Li X, Zhang HF (2015) Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials. J Mater Chem A 3(30):15513–15522. https://doi.org/10.1039/c5ta03546e

    Article  CAS  Google Scholar 

  68. Han J, Yue Y, Wu Q, Huang C, Pan H, Zhan X, Mei C, Xu X (2017) Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams. Cellulose 24(10):4433–4448. https://doi.org/10.1007/s10570-017-1409-4

    Article  CAS  Google Scholar 

  69. Chen J, Fang K, Chen Q, Xu J, Wong C-P (2018) Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 53:337–344. https://doi.org/10.1016/j.nanoen.2018.08.056

    Article  CAS  Google Scholar 

  70. Chen YY, Lu KY, Song YH, Han JQ, Yue YY, Biswas SK, Wu QL, Xiao HN (2019) A skin-inspired stretchable, self-healing and electro-conductive hydrogel with a synergistic triple network for wearable strain sensors applied in human-motion detection. Nanomaterials 9(12):20. https://doi.org/10.3390/nano9121737

    Article  CAS  Google Scholar 

  71. Han JQ, Ding QQ, Mei CT, Wu QL, Yue YY, Xu XW (2019) An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes. Electrochim Acta 318:660–672. https://doi.org/10.1016/j.electacta.2019.06.132

    Article  CAS  Google Scholar 

  72. Cai J, Niu HT, Wang HX, Shao H, Fang J, He JR, Xiong HG, Ma CJ, Lin T (2016) High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers. J Power Sources 324:302–308. https://doi.org/10.1016/j.jpowsour.2016.05.070

    Article  CAS  Google Scholar 

  73. Li Q, Deng LB, Kim JK, Zhu YQQ, Holmes SM, Perez-Page M, Eichhorn SJ (2017) Growth of carbon nanotubes on electrospun cellulose fibers for high performance supercapacitors. J Electrochem Soc 164(13):A3220–A3228. https://doi.org/10.1149/2.1181713jes

    Article  CAS  Google Scholar 

  74. Ma C, Chen JN, Fan QC, Guo JC, Liu WN, Cao EC, Shi JL, Song Y (2018) Preparation and one-step activation of nanoporous ultrafine carbon fibers derived from polyacrylonitrile/cellulose blend for used as supercapacitor electrode. J Mater Sci 53(6):4527–4539. https://doi.org/10.1007/s10853-017-1887-7

    Article  CAS  Google Scholar 

  75. Fan QC, Ma C, Wu LQ, Wei CB, Wang HH, Song Y, Shi JL (2019) Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode. RSC Adv 9(12):6419–6428. https://doi.org/10.1039/c8ra07587e

    Article  CAS  Google Scholar 

  76. Gaminian H, Montazer M, Bahi A, Karaaslan M, Ko F (2019) Capacitance performance boost of cellulose-derived carbon nanofibers via carbon and silver nanoparticles. Cellulose 26(4):2499–2512. https://doi.org/10.1007/s10570-018-2219-z

    Article  CAS  Google Scholar 

  77. Song Y, Zhang W, He SJ, Shang L, Ma RN, Jia LP, Wang HS (2019) Perylene diimide and luminol as potential-resolved electrochemiluminescence nanoprobes for dual targets immunoassay at low potential. ACS Appl Mater Interfaces 11(37):33676–33683. https://doi.org/10.1021/acsami.9b11416

    Article  CAS  Google Scholar 

  78. Han J, Wang S, Zhu S, Huang C, Yue Y, Mei C, Xu X, Xia C (2019) Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness. ACS Appl Mater Interfaces 11(47):44624–44635. https://doi.org/10.1021/acsami.9b16458

    Article  CAS  Google Scholar 

  79. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  80. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8(12):1805–1834. https://doi.org/10.1002/smll.201102635

    Article  CAS  Google Scholar 

  81. Huang Z, Li L, Wang Y, Zhang C, Liu T (2018) Polyaniline/graphene nanocomposites towards high-performance supercapacitors: a review. Compos Commun 8:83–91. https://doi.org/10.1016/j.coco.2017.11.005

    Article  Google Scholar 

  82. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  83. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  84. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107. https://doi.org/10.1021/jp902214f

    Article  CAS  Google Scholar 

  85. Lin J-H (2018) The influence of the interlayer distance on the performance of thermally reduced graphene oxide supercapacitors. Materials 11(2):263

    Article  Google Scholar 

  86. Romano V, Martín-García B, Bellani S, Marasco L, Kumar-Panda J, Oropesa-Nuñez R, Najafi L, Del-Rio-Castillo AE, Prato M, Mantero E, Pellegrini V, D’Angelo G, Bonaccorso F (2019) Flexible graphene/carbon nanotube electrochemical double-layer capacitors with ultrahigh areal performance. ChemPlusChem 84(7):882–892. https://doi.org/10.1002/cplu.201900235

    Article  CAS  Google Scholar 

  87. Purkait T, Singh G, Singh M, Kumar D, Dey RS (2017) Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep 7(1):15239. https://doi.org/10.1038/s41598-017-15463-w

    Article  CAS  Google Scholar 

  88. Gao KZ, Niu QQ, Tang QH, Guo YQ, Wang LZ (2018) Graphene-Like 2D porous carbon nanosheets derived from cornstalk pith for energy storage materials. J Electron Mater 47(1):337–346. https://doi.org/10.1007/s11664-017-5771-7

    Article  CAS  Google Scholar 

  89. Cranford SW, Brommer DB, Buehler MJ (2012) Extended graphynes: simple scaling laws for stiffness, strength and fracture. Nanoscale 4(24):7797–7809. https://doi.org/10.1039/c2nr31644g

    Article  CAS  Google Scholar 

  90. Zuo Z, Li Y (2019) Emerging electrochemical energy applications of graphdiyne. Joule 3(4):899–903. https://doi.org/10.1016/j.joule.2019.01.016

    Article  Google Scholar 

  91. Gao X, Liu H, Wang D, Zhang J (2019) Graphdiyne: synthesis, properties, and applications. Chem Soc Rev 48(3):908–936. https://doi.org/10.1039/c8cs00773j

    Article  CAS  Google Scholar 

  92. Krishnamoorthy K, Thangavel S, Chelora Veetil J, Raju N, Venugopal G, Kim SJ (2016) Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors. Int J Hydrogen Energy 41(3):1672–1678. https://doi.org/10.1016/j.ijhydene.2015.10.118

    Article  CAS  Google Scholar 

  93. Shang H, Zuo Z, Zheng H, Li K, Tu Z, Yi Y, Liu H, Li Y, Li Y (2018) N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy 44:144–154. https://doi.org/10.1016/j.nanoen.2017.11.072

    Article  CAS  Google Scholar 

  94. Wang F, Zuo Z, Shang H, Zhao Y, Li Y (2019) Ultrafastly interweaving graphdiyne nanochain on arbitrary substrates and its performance as a supercapacitor electrode. ACS Appl Mater Interfaces 11(3):2599–2607. https://doi.org/10.1021/acsami.8b01383

    Article  CAS  Google Scholar 

  95. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9(3):729–762. https://doi.org/10.1039/C5EE03109E

    Article  CAS  Google Scholar 

  96. Zhang Y, Hu Z, An Y, Guo B, An N, Liang Y, Wu H (2016) High-performance symmetric supercapacitor based on manganese oxyhydroxide nanosheets on carbon cloth as binder-free electrodes. J Power Sources 311:121–129. https://doi.org/10.1016/j.jpowsour.2016.02.017

    Article  CAS  Google Scholar 

  97. Wang C, Xiong Y, Wang H, Jin C, Sun Q (2017) Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. J Mater Chem A 5(30):15759–15770. https://doi.org/10.1039/C7TA04178K

    Article  CAS  Google Scholar 

  98. Huang Z, Guo H, Zhang C (2019) Assembly of 2D graphene sheets and 3D carbon nanospheres into flexible composite electrodes for high-performance supercapacitors. Compos Commun 12:117–122. https://doi.org/10.1016/j.coco.2019.01.010

    Article  Google Scholar 

  99. Zhang Y, Hu Z, Liang Y, Yang Y, An N, Li Z, Wu H (2015) Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors. J Mater Chem A 3(29):15057–15067. https://doi.org/10.1039/C5TA02479J

    Article  CAS  Google Scholar 

  100. Liu L, Zhao H, Lei Y (2019) Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review. InfoMat 1(1):74–84. https://doi.org/10.1002/inf2.12007

    Article  CAS  Google Scholar 

  101. Chen W, Luo M, Yang K, Zhou X (2020) Microwave-assisted KOH activation from lignin into hierarchically porous carbon with super high specific surface area by utilizing the dual roles of inorganic salts: microwave absorber and porogen. Microporous Mesoporous Mater 300:110178. https://doi.org/10.1016/j.micromeso.2020.110178

    Article  CAS  Google Scholar 

  102. Chen W, Wang X, Liu C, Luo M, Yang P, Zhou X (2020) Rapid single-step synthesis of porous carbon from an agricultural waste for energy storage application. Waste Manag (Oxf) 102:330–339. https://doi.org/10.1016/j.wasman.2019.10.058

    Article  CAS  Google Scholar 

  103. Lee J, Park MS, Kim KJ (2017) Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries. J Power Sources 341:212–218. https://doi.org/10.1016/j.jpowsour.2016.12.005

    Article  CAS  Google Scholar 

  104. Funabashi H, Takeuchi S, Tsujimura S (2017) Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. Sci Rep 7:9. https://doi.org/10.1038/srep45147

    Article  CAS  Google Scholar 

  105. Chen Q, Zhao Y, Huang XK, Chen N, Qu LT (2015) Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. J Mater Chem A 3(13):6761–6766. https://doi.org/10.1039/c5ta00734h

    Article  CAS  Google Scholar 

  106. Ciszewski M, Szatkowska E, Koszorek A, Majka M (2017) Carbon aerogels modified with graphene oxide, graphene and CNT as symetric supercapacitor electrodes. J Mater Sci-Mater Electron 28(6):4897–4903. https://doi.org/10.1007/s10854-016-6137-2

    Article  CAS  Google Scholar 

  107. Wang D, Fan W, Yuan SJ, Liu TX (2019) Improving hierarchical porous structure of carbon aerogels for more efficient ion transport for supercapacitors with commercial level mass loading. Electrochim Acta 323:10. https://doi.org/10.1016/j.electacta.2019.134811

    Article  CAS  Google Scholar 

  108. Jiang L, Sheng L, Fan Z (2018) Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater 61(2):133–158. https://doi.org/10.1007/s40843-017-9169-4

    Article  CAS  Google Scholar 

  109. Wang Y, Qu Q, Gao S, Tang G, Liu K, He S, Huang C (2019) Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–726. https://doi.org/10.1016/j.carbon.2019.09.018

    Article  CAS  Google Scholar 

  110. Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120(4):2079–2086. https://doi.org/10.1021/acs.jpcc.5b11280

    Article  CAS  Google Scholar 

  111. Becker HI (1957) Low voltage electrolytic capacitor

  112. Rightmire RA (1966) Electrical energy storage apparatus

  113. Pankaj Chavhan MP, Ganguly S (2017) Charge transport in activated carbon electrodes: the behaviour of three electrolytes vis-à-vis their specific conductance. Ionics 23(8):2037–2044. https://doi.org/10.1007/s11581-017-2048-3

    Article  CAS  Google Scholar 

  114. Tey JP, Careem MA, Yarmo MA, Arof AK (2016) Durian shell-based activated carbon electrode for EDLCs. Ionics 22(7):1209–1216. https://doi.org/10.1007/s11581-016-1640-2

    Article  CAS  Google Scholar 

  115. Momodu D, Madito M, Barzegar F, Bello A, Khaleed A, Olaniyan O, Dangbegnon J, Manyala N (2017) Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J Solid State Electrochem 21(3):859–872. https://doi.org/10.1007/s10008-016-3432-z

    Article  CAS  Google Scholar 

  116. Ma X, Song X, Yu Z, Li S, Wang X, Zhao L, Zhao L, Xiao Z, Qi C, Ning G, Gao J (2019) S-doping coupled with pore-structure modulation to conducting carbon black: toward high mass loading electrical double-layer capacitor. Carbon 149:646–654. https://doi.org/10.1016/j.carbon.2019.04.110

    Article  CAS  Google Scholar 

  117. Yao Y, Ma C, Wang J, Qiao W, Ling L, Long D (2015) Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes. ACS Appl Mater Interfaces 7(8):4817–4825. https://doi.org/10.1021/am5087374

    Article  CAS  Google Scholar 

  118. Oyedotun KO, Masikhwa TM, Lindberg S, Matic A, Johansson P, Manyala N (2019) Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene. Chem Eng J 375:121906. https://doi.org/10.1016/j.cej.2019.121906

    Article  CAS  Google Scholar 

  119. Cetinkaya T, Dryfe RAW (2018) Electrical double layer supercapacitors based on graphene nanoplatelets electrodes in organic and aqueous electrolytes: effect of binders and scalable performance. J Power Sources 408:91–104. https://doi.org/10.1016/j.jpowsour.2018.10.072

    Article  CAS  Google Scholar 

  120. Phan TN, Gong MK, Thangavel R, Lee YS, Ko CH (2019) Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): role of mesopores and mesopore structures. J Alloys Compd 780:90–97. https://doi.org/10.1016/j.jallcom.2018.11.348

    Article  CAS  Google Scholar 

  121. Li Y, van Zijll M, Chiang S, Pan N (2011) KOH modified graphene nanosheets for supercapacitor electrodes. J Power Sources 196(14):6003–6006. https://doi.org/10.1016/j.jpowsour.2011.02.092

    Article  CAS  Google Scholar 

  122. He M, Fic K, Fŗckowiak E, Novák P, Berg EJ (2016) Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ Sci 9(2):623–633. https://doi.org/10.1039/C5EE02875B

    Article  Google Scholar 

  123. Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) Carbon electrodes for double-layer capacitors I: relations between ion and pore dimensions. J Electrochem Soc 147(7):2486–2493. https://doi.org/10.1149/1.1393557

    Article  CAS  Google Scholar 

  124. Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12):2498–2507. https://doi.org/10.1016/j.carbon.2006.05.022

    Article  CAS  Google Scholar 

  125. Trasatti S, Buzzanca G (1971) Ruthenium dioxide. A new interesting electrode material. Solid state structure and electrochemical behaviour. J Electroanal Chem Interfacial Electrochem 29(2):A1–A5. https://doi.org/10.1016/S0022-0728(71)80111-0

    Article  Google Scholar 

  126. Long JW, Swider KE, Merzbacher CI, Rolison DR (1999) Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15(3):780–785. https://doi.org/10.1021/la980785a

    Article  CAS  Google Scholar 

  127. Dmowski W, Egami T, Swider-Lyons KE, Love CT, Rolison DR (2002) Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J Phys Chem B 106(49):12677–12683. https://doi.org/10.1021/jp026228l

    Article  CAS  Google Scholar 

  128. Cheng H, Huang Y, Shi G, Jiang L, Qu L (2017) Graphene-based functional architectures: sheets regulation and macrostructure construction toward actuators and power generators. Acc Chem Res 50(7):1663–1671. https://doi.org/10.1021/acs.accounts.7b00131

    Article  CAS  Google Scholar 

  129. John AR, Arumugam P (2015) Open ended nitrogen-doped carbon nanotubes for the electrochemical storage of energy in a supercapacitor electrode. J Power Sources 277:387–392. https://doi.org/10.1016/j.jpowsour.2014.11.151

    Article  CAS  Google Scholar 

  130. Ma W, Xie L, Dai L, Sun G, Chen J, Su F, Cao Y, Lei H, Kong Q, Chen C-M (2018) Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochim Acta 266:420–430. https://doi.org/10.1016/j.electacta.2018.02.031

    Article  CAS  Google Scholar 

  131. Lv X, Qi Z, Jiang Z, Zhou Y, Zhao W, Jiao J (2019) The microstructure and mechanical properties of silicon carbide fibers with boron nitride interphase. IOP Conf Ser Mater Sci Eng 678:012061. https://doi.org/10.1088/1757-899x/678/1/012061

    Article  CAS  Google Scholar 

  132. Chen J, Huo Y, Li S, Huang Y, Lv S (2019) Host-guest complexes of β-cyclodextrin with methyl orange/methylene blue-derived multi-heteroatom doped carbon materials for supercapacitors. Compos Commun 16:117–123. https://doi.org/10.1016/j.coco.2019.09.007

    Article  Google Scholar 

  133. Yang PS, Ma L, Gan MY, Lei Y, Zhang XL, Jin M, Fu G (2017) Preparation and application of PANI/N-doped porous carbon under the protection of ZnO for supercapacitor electrode. J Mater Sci-Mater Electron 28(10):7333–7342. https://doi.org/10.1007/s10854-017-6420-x

    Article  CAS  Google Scholar 

  134. Wang F, Wang Y, Fang Y, Zhu J, Li X, Qi J, Wu W (2020) Synthesis of nitrogen-doped flower-like carbon microspheres from urea-formaldehyde resins for high-performance supercapacitor. J Alloys Compd 812:152109. https://doi.org/10.1016/j.jallcom.2019.152109

    Article  CAS  Google Scholar 

  135. Guo J, Wu DL, Wang T, Ma Y (2019) P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Appl Surf Sci 475:56–66. https://doi.org/10.1016/j.apsusc.2018.12.095

    Article  CAS  Google Scholar 

  136. He SJ, Zhang CM, Du C, Cheng CF, Chen W (2019) High rate-performance supercapacitor based on nitrogen-doped hollow hexagonal carbon nanoprism arrays with ultrathin wall thickness in situ fabricated on carbon cloth. J Power Sources 434:9. https://doi.org/10.1016/j.jpowsour.2019.226701

    Article  CAS  Google Scholar 

  137. Zhang S, Tian K, Cheng BH, Jiang H (2017) Preparation of N-Doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes. ACS Sustain Chem Eng 5(8):6682–6691. https://doi.org/10.1021/acssuschemeng.7b00920

    Article  CAS  Google Scholar 

  138. Ren M, Jia Z, Tian Z, Lopez D, Cai J, Titirici M-M, Jorge AB (2018) High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications. ChemElectroChem 5(18):2686–2693. https://doi.org/10.1002/celc.201800603

    Article  CAS  Google Scholar 

  139. Chen LF, Zhang M, Yang XD, Li WZ, Zheng J, Gan WJ, Xu JL (2017) Sandwich-structured MnO2@N-doped Carbon@MnO2 nanotubes for high-performance supercapacitors. J Alloys Compd 695:3339–3347. https://doi.org/10.1016/j.jallcom.2016.12.035

    Article  CAS  Google Scholar 

  140. Brousse T, Taberna P-L, Crosnier O, Dugas R, Guillemet P, Scudeller Y, Zhou Y, Favier F, Bélanger D, Simon P (2007) Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J Power Sources 173(1):633–641. https://doi.org/10.1016/j.jpowsour.2007.04.074

    Article  CAS  Google Scholar 

  141. Yuan CZ, Zhang LH, Hou LR, Pang G, Oh WC (2014) One-step hydrothermal fabrication of strongly coupled Co3O4 nanosheets-reduced graphene oxide for electrochemical capacitors. RSC Adv 4(28):14408–14413. https://doi.org/10.1039/c4ra00762j

    Article  CAS  Google Scholar 

  142. Hassan DK, El-Safty SA, Khalil KA, Dewidar M, Abu El-Maged G (2016) Mesoporous carbon/Co3O4 hybrid as efficient electrode for methanol electrooxidation in alkaline conditions. Int J Electrochem Sci 11(10):8374–8390. https://doi.org/10.20964/2016.10.09

    Article  CAS  Google Scholar 

  143. Wang QC, Xue XX, Lei YP, Wang YC, Feng YX, Xiong X, Wang DS, Li YD (2020) Engineering of electronic states on Co3O4 ultrathin nanosheets by cation substitution and anion vacancies for oxygen evolution reaction. Small 16(24):7. https://doi.org/10.1002/smll.202001571

    Article  CAS  Google Scholar 

  144. Zheng HJ, Tang FQ, Lim M, Rufford T, Mukherji A, Wang LZ, Lu GQ (2009) Electrochemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films. J Power Sources 193(2):930–934. https://doi.org/10.1016/j.jpowsour.2009.03.005

    Article  CAS  Google Scholar 

  145. Ren XC, Tian CJ, Zhao YC, Zhao WY, Wang CA (2015) Preparation and properties of Core-Shell C@MnO2 electrode material as supercapacitor. Rare Met Mater Eng 44:116–119

    Google Scholar 

  146. Zhang ZR, Yao ZP, Meng YQ, Li DQ, Xia QX, Jiang ZH (2019) Construction of TiO2 Nanotubes/C/MnO2 composite films as a binder-free electrode for a high-performance supercapacitor. Inorg Chem 58(2):1591–1598. https://doi.org/10.1021/acs.inorgchem.8b03094

    Article  CAS  Google Scholar 

  147. Kim IT, Kouda N, Yoshimoto N, Morita M (2015) Preparation and electrochemical analysis of electrodeposited MnO2/C composite for advanced capacitor electrode. J Power Sources 298:123–129. https://doi.org/10.1016/j.jpowsour.2015.08.046

    Article  CAS  Google Scholar 

  148. Li Q, Lu XF, Xu H, Tong YX, Li GR (2014) Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Appl Mater Interfaces 6(4):2726–2733. https://doi.org/10.1021/am405271q

    Article  CAS  Google Scholar 

  149. Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223. https://doi.org/10.1006/jssc.1998.8128

    Article  CAS  Google Scholar 

  150. Sun ZS, Shen SDA, Mao DS, Lu GZ (2015) Manganese oxide/mesoporous carbon spherical composite: study on its enhanced catalytic and electrochemical performance. In: Gao Y (ed) Proceedings of the international conference on chemical, material and food engineering, vol 22. AER-advances in engineering research. Atlantis Press, Paris, pp 363–366

  151. Tang QQ, Chen MM, Yang CY, Wang WQ, Bao H, Wang GC (2015) Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl Mater Interfaces 7(28):15303–15313. https://doi.org/10.1021/acsami.5b03148

    Article  CAS  Google Scholar 

  152. Amade R, Jover E, Caglar B, Mutlu T, Bertran E (2011) Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application. J Power Sources 196(13):5779–5783. https://doi.org/10.1016/j.jpowsour.2011.02.029

    Article  CAS  Google Scholar 

  153. Zhang CY, Zhu XH, Wang ZX, Sun P, Ren YJ, Zhu JL, Zhu JG, Xiao DQ (2014) Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors. Nanoscale Res Lett 9:8. https://doi.org/10.1186/1556-276x-9-490

    Article  Google Scholar 

  154. Ge J, Yao H-B, Hu W, Yu X-F, Yan Y-X, Mao L-B, Li H-H, Li S-S, Yu S-H (2013) Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy 2(4):505–513. https://doi.org/10.1016/j.nanoen.2012.12.002

    Article  CAS  Google Scholar 

  155. Abdah M, Edris N, Kulandaivalu S, Rahman NA, Sulaiman Y (2018) Supercapacitor with superior electrochemical properties derived from symmetrical manganese oxide-carbon fiber coated with polypyrrole. Int J Hydrogen Energy 43(36):17328–17337. https://doi.org/10.1016/j.ijhydene.2018.07.093

    Article  CAS  Google Scholar 

  156. Wang J-G, Yang Y, Huang Z-H, Kang F (2013) Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. J Power Sources 224:86–92. https://doi.org/10.1016/j.jpowsour.2012.09.075

    Article  CAS  Google Scholar 

  157. He SJ, Chen W (2015) Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. J Power Sources 294:150–158. https://doi.org/10.1016/j.jpowsour.2015.06.051

    Article  CAS  Google Scholar 

  158. Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10(2):538–545. https://doi.org/10.1039/C6EE03716J

    Article  CAS  Google Scholar 

  159. Yi T-F, Mei J, Xie Y, Luo S (2019) Hybrid porous flower-like NiO@CeO2microspheres with improved pseudocapacitiveproperties. Electrochim Acta 297:593–605. https://doi.org/10.1016/j.electacta.2018.12.037

    Article  CAS  Google Scholar 

  160. Yi T-F, Pan J-J, Wei T-T, Li Y, Cao G (2020) NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today 33:100894. https://doi.org/10.1016/j.nantod.2020.100894

    Article  CAS  Google Scholar 

  161. Ouyang Y, Xia XF, Ye HT, Wang L, Jiao XY, Lei W, Hao QL (2018) Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl Mater Interfaces 10(4):3549–3561. https://doi.org/10.1021/acsami.7b16021

    Article  CAS  Google Scholar 

  162. Li Y, Pan J, Wu J, Yi T, Xie Y (2019) Mesoporous NiCo2O4 nanoneedles@MnO2 nanoparticles grown on nickel foam for electrode used in high-performance supercapacitors. J Energy Chem 31:167–177. https://doi.org/10.1016/j.jechem.2018.06.009

    Article  Google Scholar 

  163. Yi T-F, Qiu L-Y, Mei J, Qi S-Y, Cui P, Luo S, Zhu Y-R, Xie Y, He Y-B (2020) Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bull 65(7):546–556. https://doi.org/10.1016/j.scib.2020.01.011

    Article  CAS  Google Scholar 

  164. Abbas Q, Ratajczak P, Babuchowska P, Comte AL, Bélanger D, Brousse T, Béguin F (2015) Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes. J Electrochem Soc 162(5):A5148–A5157. https://doi.org/10.1149/2.0241505jes

    Article  CAS  Google Scholar 

  165. Dai Z, Peng C, Chae JH, Ng KC, Chen GZ (2015) Cell voltage versus electrode potential range in aqueous supercapacitors. Sci Rep 5(1):9854. https://doi.org/10.1038/srep09854

    Article  CAS  Google Scholar 

  166. Yu M, Lin D, Feng H, Zeng Y, Tong Y, Lu X (2017) Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew Chem Int Ed 56(20):5454–5459. https://doi.org/10.1002/anie.201701737

    Article  CAS  Google Scholar 

  167. Weng Z, Li F, Wang D-W, Wen L, Cheng H-M (2013) Controlled electrochemical charge injection to maximize the energy density of supercapacitors. Angew Chem Int Ed 52(13):3722–3725. https://doi.org/10.1002/anie.201209259

    Article  CAS  Google Scholar 

  168. Yu M, Lu Y, Zheng H, Lu X (2018) New insights into the operating voltage of aqueous supercapacitors. Chemistry Eur J 24(15):3639–3649. https://doi.org/10.1002/chem.201704420

    Article  CAS  Google Scholar 

  169. Bichat MP, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48(15):4351–4361. https://doi.org/10.1016/j.carbon.2010.07.049

    Article  CAS  Google Scholar 

  170. Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5(2):5842–5850. https://doi.org/10.1039/C1EE02262H

    Article  CAS  Google Scholar 

  171. Long JW, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes. MRS Bull 36(7):513–522. https://doi.org/10.1557/mrs.2011.137

    Article  CAS  Google Scholar 

  172. Shimizu W, Makino S, Takahashi K, Imanishi N, Sugimoto W (2013) Development of a 4.2 V aqueous hybrid electrochemical capacitor based on MnO2 positive and protected Li negative electrodes. J Power Sources 241:572–577. https://doi.org/10.1016/j.jpowsour.2013.05.003

    Article  CAS  Google Scholar 

  173. Li Y, Xu ZY, Wang DW, Zhao J, Zhang HH (2017) Snowflake-like core-shell alpha-MnO2@delta-MnO2 for high performance asymmetric supercapacitor. Electrochim Acta 251:344–354. https://doi.org/10.1016/j.electacta.2017.08.146

    Article  CAS  Google Scholar 

  174. Patil UM, Sohn JS, Kulkarni SB, Park HG, Jung Y, Gurav KV, Kim JH, Jun SC (2014) A facile synthesis of hierarchical alpha-MnO2 nanofibers on 3D-graphene foam for supercapacitor application. Mater Lett 119:135–139. https://doi.org/10.1016/j.matlet.2013.12.105

    Article  CAS  Google Scholar 

  175. Yang S, Liu Y, Hao Y, Yang X, Goddard WA III, Zhang XL, Cao B (2018) Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv Sci 5(4):1700659. https://doi.org/10.1002/advs.201700659

    Article  CAS  Google Scholar 

  176. Chen Y, Jing C, Fu X, Shen M, Cao T, Huo W, Liu X, Yao H-C, Zhang Y, Yao KX (2020) In-situ fabricating MnO2 and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor. Appl Surf Sci 503:144123. https://doi.org/10.1016/j.apsusc.2019.144123

    Article  CAS  Google Scholar 

  177. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Abdul Rahman N, Abdullah AH, Sulaiman Y (2019) Potentiostatic deposition of poly(3, 4-ethylenedioxythiophene) and manganese oxide on porous functionalised carbon fibers as an advanced electrode for asymmetric supercapacitor. J Power Sources 444:227324. https://doi.org/10.1016/j.jpowsour.2019.227324

    Article  CAS  Google Scholar 

  178. Chen LF, Huang J, Zeng R, Xiong YS, Wei JC, Yuan K, Chen YW (2020) Regulating voltage window and energy density of aqueous asymmetric supercapacitors by pinecone-like hollow Fe2O3/MnO2 nano-heterostructure. Adv Mater Interfaces. https://doi.org/10.1002/admi.201901729

    Article  Google Scholar 

  179. Zheng YY, Zhang XD, Tian YR, Zhang HP, Guo QP, Zhang YD, Luo JJ, Li ZY (2019) MnO2 nanoparticle improved cyclic stability of carbon fiber cloth supported NiO battery-type supercapacitor materials by microwave solid-state method. J Electrochem Soc 166(16):A3972–A3979. https://doi.org/10.1149/2.0201916jes

    Article  CAS  Google Scholar 

  180. Kolathodi MS, Palei M, Natarajan TS, Singh G (2019) MnO2 encapsulated electrospun TiO2 nanofibers as electrodes for asymmetric supercapacitors. Nanotechnology. https://doi.org/10.1088/1361-6528/ab5d64

    Article  Google Scholar 

  181. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2019) Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly(3,4-ethylenedioxythiophene)/manganese oxide//activated carbon with superior electrochemical performance. Sci Rep 9(1):16782. https://doi.org/10.1038/s41598-019-53421-w

    Article  CAS  Google Scholar 

  182. Li S, Yang K, Ye P, Ma K, Zhang Z, Huang Q (2020) Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl Surf Sci 503:144090. https://doi.org/10.1016/j.apsusc.2019.144090

    Article  CAS  Google Scholar 

  183. Xiao SF, Huang JX, Lin C, Xie A, Lin BZ, He LW, Sun DY (2020) Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro/mesoporous hierarchy in Co3O4/C composite for asymmetric supercapacitors. Microporous Mesoporous Mater 291:8. https://doi.org/10.1016/j.micromeso.2019.109709

    Article  CAS  Google Scholar 

  184. Yin Q, He L, Lian J, Sun J, Xiao S, Luo J, Sun D, Xie A, Lin B (2019) The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors. Carbon 155:147–154. https://doi.org/10.1016/j.carbon.2019.08.060

    Article  CAS  Google Scholar 

  185. He CG, Jiang YL, Zhang XF, Cui X, Yang YK (2020) A simple glucose-blowing approach to graphene-like foam/NiO composites for asymmetric supercapacitors. Energy Technol 9:15–20. https://doi.org/10.1002/ente.201900923

    Article  CAS  Google Scholar 

  186. Zhang ZF, Su XR, Zhu YY, Chen ZH, Fang ZB, Luo XJ (2019) Porous multishelled NiO hollow microspheres encapsulated within three-dimensional graphene as flexible free-standing electrodes for high-performance supercapacitors. Nanoscale 11(34):16071–16079. https://doi.org/10.1039/c9nr05117a

    Article  CAS  Google Scholar 

  187. Paliwal MK, Meher SK (2019) Hierarchically organized ultrathin NiO nanofibers/highly defective-rGO heteronanocomposite: an advanced electrode material for asymmetric supercapacitors. Adv Mater Interfaces 6(20):1900889. https://doi.org/10.1002/admi.201900889

    Article  CAS  Google Scholar 

  188. Choi N-S, Chen Z, Freunberger SA, Ji X, Sun Y-K, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024. https://doi.org/10.1002/anie.201201429

    Article  CAS  Google Scholar 

  189. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210. https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

  190. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790. https://doi.org/10.1039/C4CS00266K

    Article  CAS  Google Scholar 

  191. Aravindan V, Gnanaraj J, Lee Y-S, Madhavi S (2014) Insertion-type electrodes for nonaqueous li-ion capacitors. Chem Rev 114(23):11619–11635. https://doi.org/10.1021/cr5000915

    Article  CAS  Google Scholar 

  192. Ding J, Hu W, Paek E, Mitlin D (2018) Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev 118(14):6457–6498. https://doi.org/10.1021/acs.chemrev.8b00116

    Article  CAS  Google Scholar 

  193. Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148(8):A803–A811. https://doi.org/10.1149/1.1379565

    Article  CAS  Google Scholar 

  194. Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 28–30:1172–1175. https://doi.org/10.1016/0167-2738(88)90351-7

    Article  Google Scholar 

  195. Khomenko V, Raymundo-Piñero E, Béguin F (2008) High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources 177(2):643–651. https://doi.org/10.1016/j.jpowsour.2007.11.101

    Article  CAS  Google Scholar 

  196. Han X, Han P, Yao J, Zhang S, Cao X, Xiong J, Zhang J, Cui G (2016) Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors. Electrochim Acta 196:603–610. https://doi.org/10.1016/j.electacta.2016.02.185

    Article  CAS  Google Scholar 

  197. Jayaraman S, Jain A, Ulaganathan M, Edison E, Srinivasan MP, Balasubramanian R, Aravindan V, Madhavi S (2017) Li-ion vs. Na-ion capacitors: a performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chem Eng J 316:506–513. https://doi.org/10.1016/j.cej.2017.01.108

    Article  CAS  Google Scholar 

  198. Liu M, Zhang Z, Dou M, Li Z, Wang F (2019) Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon 151:28–35. https://doi.org/10.1016/j.carbon.2019.05.065

    Article  CAS  Google Scholar 

  199. Li ZY, Chen GR, Deng J, Li D, Yan TT, An ZX, Shi LY, Zhang DS (2019) Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for li-ion hybrid capacitors. ACS Sustain Chem Eng 7(18):15394–15403. https://doi.org/10.1021/acssuschemeng.9b02849

    Article  CAS  Google Scholar 

  200. Yun YS, Cho SY, Kim H, Jin H-J, Kang K (2015) Ultra-thin hollow carbon nanospheres for pseudocapacitive sodium-ion storage. ChemElectroChem 2(3):359–365. https://doi.org/10.1002/celc.201402359

    Article  CAS  Google Scholar 

  201. Ding J, Li Z, Cui K, Boyer S, Karpuzov D, Mitlin D (2016) Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 23:129–137. https://doi.org/10.1016/j.nanoen.2016.03.014

    Article  CAS  Google Scholar 

  202. Wang H, Mitlin D, Ding J, Li Z, Cui K (2016) Excellent energy–power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J Mater Chem A 4(14):5149–5158. https://doi.org/10.1039/C6TA01392A

    Article  CAS  Google Scholar 

  203. Liu Z, Zhang X, Huang D, Gao B, Ni C, Wang L, Ren Y, Wang J, Gou H, Wang G (2020) Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chem Eng J 379:122418. https://doi.org/10.1016/j.cej.2019.122418

    Article  CAS  Google Scholar 

  204. Chojnacka A, Pan X, Jeżowski P, Béguin F (2019) High performance hybrid sodium-ion capacitor with tin phosphide used as battery-type negative electrode. Energy Storage Materials 22:200–206. https://doi.org/10.1016/j.ensm.2019.07.016

    Article  Google Scholar 

  205. Chu J, Yu Q, Yang D, Xing L, Lao C-Y, Wang M, Han K, Liu Z, Zhang L, Du W, Xi K, Bao Y, Wang W (2018) Thickness-control of ultrathin bimetallic Fe–Mo selenide@N-doped carbon core/shell “nano-crisps” for high-performance potassium-ion batteries. Appl Mater Today 13:344–351. https://doi.org/10.1016/j.apmt.2018.10.004

    Article  Google Scholar 

  206. Jian ZL, Luo W, Ji XL (2015) Carbon Electrodes for K-Ion Batteries. J Am Chem Soc 137(36):11566–11569. https://doi.org/10.1021/jacs.5b06809

    Article  CAS  Google Scholar 

  207. Singh N, Arthur TS, Ling C, Matsui M, Mizuno F (2013) A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun 49(2):149–151. https://doi.org/10.1039/c2cc34673g

    Article  CAS  Google Scholar 

  208. Wang M, Jiang CL, Zhang SQ, Song XH, Tang YB, Cheng HM (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nature Chemistry 10(6):667–672. https://doi.org/10.1038/s41557-018-0045-4

    Article  CAS  Google Scholar 

  209. Jayaprakash N, Das SK, Archer LA (2011) The rechargeable aluminum-ion battery. Chem Commun 47(47):12610–12612. https://doi.org/10.1039/c1cc15779e

    Article  CAS  Google Scholar 

  210. Xu CJ, Li BH, Du HD, Kang FY (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed 51(4):933–935. https://doi.org/10.1002/anie.201106307

    Article  CAS  Google Scholar 

  211. Chen M, Chen J, Zhou W, Xu J, Wong C-P (2019) High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J Mater Chem A 7(46):26524–26532. https://doi.org/10.1039/C9TA10944G

    Article  CAS  Google Scholar 

  212. Xu C, Chen Y, Shi S, Li J, Kang F, Su D (2015) Secondary batteries with multivalent ions for energy storage. Sci Rep 5(1):14120. https://doi.org/10.1038/srep14120

    Article  CAS  Google Scholar 

  213. Dong L, Yang W, Yang W, Li Y, Wu W, Wang G (2019) Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J Mater Chem A 7(23):13810–13832. https://doi.org/10.1039/C9TA02678A

    Article  CAS  Google Scholar 

  214. Ma X, Cheng J, Dong L, Liu W, Mou J, Zhao L, Wang J, Ren D, Wu J, Xu C, Kang F (2019) Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater 20:335–342. https://doi.org/10.1016/j.ensm.2018.10.020

    Article  Google Scholar 

  215. Wang H, Wang M, Tang Y (2018) A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater 13:1–7. https://doi.org/10.1016/j.ensm.2017.12.022

    Article  Google Scholar 

  216. Dong L, Ma X, Li Y, Zhao L, Liu W, Cheng J, Xu C, Li B, Yang Q-H, Kang F (2018) Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater 13:96–102. https://doi.org/10.1016/j.ensm.2018.01.003

    Article  Google Scholar 

  217. Wang F, Liu Z, Wang X, Yuan X, Wu X, Zhu Y, Fu L, Wu Y (2016) A conductive polymer coated MoO3 anode enables an Al-ion capacitor with high performance. J Mater Chem A 4(14):5115–5123. https://doi.org/10.1039/C6TA01398H

    Article  CAS  Google Scholar 

  218. Li Z, Xiang K, Xing WT, Carter WC, Chiang YM (2015) Reversible aluminum-ion intercalation in prussian blue analogs and demonstration of a high-power aluminum-ion asymmetric capacitor. Adv Energy Mater 5(5):6. https://doi.org/10.1002/aenm.201401410

    Article  CAS  Google Scholar 

  219. Yoo HD, Shterenberg I, Gofer Y, Doe RE, Fischer CC, Ceder G, Aurbach D (2014) A magnesium-activated carbon hybrid capacitor. J Electrochem Soc 161(3):A410–A415. https://doi.org/10.1149/2.082403jes

    Article  CAS  Google Scholar 

  220. Wu N, Yao W, Song X, Zhang G, Chen B, Yang J, Tang Y (2019) A calcium-ion hybrid energy storage device with high capacity and long cycling life under room temperature. Adv Energy Mater 9(16):1803865. https://doi.org/10.1002/aenm.201803865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (51803093 and 51903123) and Natural Science Foundation of Jiangsu Province (BK20180770 and BK20190760).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoqing Hou, Gaigai Duan or Shaohua Jiang.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, L., Hou, H. et al. Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci 56, 173–200 (2021). https://doi.org/10.1007/s10853-020-05157-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05157-6

Navigation