Skip to main content
Log in

Activity evaluation of carbon paste electrodes loaded with pt nanoparticles prepared in different radiolytic conditions

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Three Pt-based catalysts prepared in different radiolytic conditions and supported on graphite powder were packed into a carbon paste electrode configuration. They were compared to each other, to the commercial (Pt) deposited on activated carbon powder (Johnson Matthey) and to pure Vulcan XC-72 for their respective abilities toward the hydrogen evolution reaction (HER). The Tafel parameters were determined for all these electrodes. From the I–V curves and their quantitative treatment, the following order of activity emerged unambiguously and reads: (PtCO)2 (fcc structure) > (PtCO)1 (Chini cluster) > (Pt)neat > (Pt)JM (Johnson Matthey) ≫ (Vulcan XC-72). As expected, all the Pt-loaded electrodes were more efficient than Vulcan XC-72. The classification appears to be linked with the mean nanoparticle size, and for comparable sizes, with the surface morphology of the materials. The results and the stability of the electrodes suggest that the small particle sizes and the good dispersity on the carbon support were maintained during the HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

References

  1. Schmid G (ed) (1994) Clusters and Colloids: From Theory to Applications. Weinheim, New York

    Google Scholar 

  2. Henglein A (1993) J Phys Chem 97:5457

    Article  CAS  Google Scholar 

  3. Lin Y, Finke RG (1994) J Am Chem Soc 116:8335

    Article  CAS  Google Scholar 

  4. Widegren JA, Aiken JD III, Özcar S, Finke RG (2001) Chem Mater 13:312

    Article  CAS  Google Scholar 

  5. Özcar S, Finke RG (2002) J Am Chem Soc 124:5796

    Article  CAS  Google Scholar 

  6. El-Sayed MA (2001) Acc Chem Res 34:257

    Article  CAS  Google Scholar 

  7. Dillon R, Srinivasan S, Aricò AS, Antonucci V (2003) J Power Sources 127:112

    Article  CAS  Google Scholar 

  8. Schmidt TJ, Gesteiger HA, Behm R (1999) Electrochem Commun 1:1

    Article  CAS  Google Scholar 

  9. Leite ER, Wever IT, Longo E, Varela JA (2000) Adv Mater 12:965

    Article  CAS  Google Scholar 

  10. Zoval JV, Lee J, Gorer S, Penner RM (1998) J Phys Chem B 102:1166

    Article  CAS  Google Scholar 

  11. Yohannes K (1996) J Electrochem Soc 143:2152

    Article  Google Scholar 

  12. Takasu Y, Ohashi N, Zhang XG, Murakami N, Minagawa H, Sato S, Yahikozawa K (1996) Electrochimica Acta 41:2595

    Article  CAS  Google Scholar 

  13. Goia DV, Matijevic E (1998) New J Chem 1203

  14. Lizcano-Valbuena WH, de Azevedo DC, Gonzalez ER (2004) Electrochimica Acta 49:1289

    Article  CAS  Google Scholar 

  15. Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) New J Chem 1257

  16. Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) New J Chem 1239

  17. Aika K, Ban LL, Okura I, Namba S, Turkevich J (1976) J Res Inst Catal 24:54

    CAS  Google Scholar 

  18. Le Gratiet B, Remita H, Picq G, Delcourt MO (1996) J Catal 164:36

    Article  CAS  Google Scholar 

  19. Shaikhutdinov SK, Möller FA, Mestl G, Behm RJ (1996) J Catal 163:492

    Article  CAS  Google Scholar 

  20. Pron’kin SN, Tsirlina GA, Petrii OA, Yu Vassiliev S (2001) Electrochimica Acta 46:2343

    Article  CAS  Google Scholar 

  21. You T, Niwa O, Tomita M, Hirono S (2003) Anal Chem 75:2080

    Article  CAS  Google Scholar 

  22. Xu Z, Qi Z, Kaufman A (2003) J Chem Soc Chem Commun 878

  23. Zhou Z, Wang S, Zhou W, Wang G, Jiang L, Li W, Song S, Liu J, Sun G, Xin Q (2003) J Chem Soc Chem Commun 394

  24. Le Gratiet B, Remita H, Picq G, Delcourt MO (1996) Radiat Phys Chem 47:263

    Article  CAS  Google Scholar 

  25. Torigoe K, Remita H, Picq G, Belloni J, Bazin D (2000) J Phys Chem B 104:7050

    Article  CAS  Google Scholar 

  26. Merz A (1990) Top Curr Chem 152:49

    Article  CAS  Google Scholar 

  27. Murray RW (ed) (1992) Molecular design of electrode surfaces. Wiley, New York

    Google Scholar 

  28. Wang J, Naser N, Angnes L, Wu H, Chen L (1992) Anal Chem 64:1285

    Article  CAS  Google Scholar 

  29. Lubert KH, Guttmann M, Beyer L (1999) J Electroanal Chem 462:174

    Article  CAS  Google Scholar 

  30. Remita H, Keita B, Torigoe G, Belloni J, Nadjo L (2004) Surf Sci 572:301

    Article  CAS  Google Scholar 

  31. Treguer M, Remita H, Pernot P, Khatouri J, Belloni J (2001) J Phys Chem A 105:6102

    Article  CAS  Google Scholar 

  32. Keita B, Nadjo L, Parsons R (1989) J Electroanal Chem 258:207

    Article  CAS  Google Scholar 

  33. Trasatti S (1972) J Electroanal Chem 39:163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the CNRS (UMR 8000) and the University Paris Sud XI. The authors are gratefully indebted to P. Beaunier, Laboratoire de Rèactivité de Surfaces, Paris VI, for her contribution in characterization experiments through electron microscopy. F. Porcher is thanked for his help in several irradiation and impregnation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Nadjo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remita, H., Siril, P.F., Mbomekalle, IM. et al. Activity evaluation of carbon paste electrodes loaded with pt nanoparticles prepared in different radiolytic conditions. J Solid State Electrochem 10, 506–511 (2006). https://doi.org/10.1007/s10008-005-0005-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0005-y

Keywords

Navigation