Skip to main content

Advertisement

Log in

Research Progress Concerning Fungal and Bacterial β-Xylosidases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present review, we briefly summarize the biotechnological applications of microbial β-xylosidases in the processing of agro-industrial residues into fuels and chemicals and report the importance of using immobilization techniques to study the enzyme. The advantages of utilizing genes that encode β-xylosidases are readily apparent in the bioconversion of abundant, inexpensive, and renewable resources into economically important products, such as xylitol and bioethanol. We highlight recent research characterizing fungal and bacterial β-xylosidases, including the use of classical biochemical methods such as purification, heterologous recombinant protein expression, and metagenomic approaches to discovery β-xylosidases, with focus on enzyme molecular and kinetic properties. In addition, we discuss the relevance of using experimental design optimization methodologies to increase the efficacy of these enzymes for use with residual biomass. Finally, we emphasize more extensively the advances in the regulatory mechanisms governing β-xylosidase gene expression and xylose metabolism in gram-negative and gram-positive bacteria and fungi. Unlike previous reviews, this revision covers recent research concerning the various features of bacterial and fungal β-xylosidases with a greater emphasis on their biochemical characteristics and how the genes that encode these enzymes can be better exploited to obtain products of biotechnological interest via the application of different technical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

pNPX:

p-Nitrophenyl-β-d-xylopyranoside

oNPX:

o-Nitrophenyl-β-d-xylopyranoside

pNPG:

p-Nitrophenyl-β-d-glucopyranoside

pNPA:

p-Nitrophenyl-α-l-arabinopyranoside

pNPAf :

p-Nitrophenyl-α-d-arabinopyranoside

SSF:

Solid-state fermentation

SmF:

Submerged fermentation

SiSF:

Simultaneous saccharification fermentation

CCR:

Carbon catabolic repression

References

  1. Rennie, E. A., & Scheller, H. V. (2014). Xylan biosynthesis. Current Opinion in Biotechnology, 26, 100–107.

    Article  CAS  Google Scholar 

  2. Prade, R. A. (1996). Xylanases: from biology to biotechnology. Biotechnology and Genetic Engineering Reviews, 13, 101–131.

    Article  CAS  Google Scholar 

  3. Laufenberg, G., Kunz, B., & Nystroem, M. (2003). Transformation of vegetable waste into value added products: (A) the upgrading concept, (B) practical implementations. Bioresource Technology, 87, 167–198.

    Article  CAS  Google Scholar 

  4. Couto, S. R., & Sanromán, M. A. (2006). Application of solid-state fermentation to food industry—a review. Journal of Food Engineering, 76, 291–302.

    Article  CAS  Google Scholar 

  5. Terenzi, H. F., Jorge, J. A., & Amorin, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  6. Yoon, K. Y., Woodams, E. E., & Hang, Y. D. (2006). Enzymatic production of pentoses from the hemicellulose fraction of corn residues. LWT—Food Science and Technology, 39, 388–392.

    Article  CAS  Google Scholar 

  7. Corrêa, J. M., Mingori, M. R., Gandra, R. F., Loth, E. A., Seixas, F. A. V., & Simão, R. C. G. (2014). Depletion of the xynB2 gene upregulates β-xylosidase expression in C. crescentus. Applied Biochemistry and Biotechnology, 172, 1085–1097.

    Article  CAS  Google Scholar 

  8. Verma, D., & Satyanarayana, T. (2012). Molecular approaches for ameliorating microbial xylanases. Bioresource Technology, 117, 360–367.

    Article  CAS  Google Scholar 

  9. Juturu, V., & Wu, J. C. (2012). Microbial xylanases: engineering, production and industrial applications. Biotechnology Advances, 30, 1219–1227.

    Article  CAS  Google Scholar 

  10. Dodd, D., & Cann, I. K. O. (2009). Enzymatic deconstruction of xylan for biofuel production. Global Change Biology Bioenergy, 18, 2–28.

    Article  CAS  Google Scholar 

  11. Sunna, A., & Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17, 39–67.

    Article  CAS  Google Scholar 

  12. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  13. Finell, J., Jokela, J., Leisola, M., & Riekkola, M. L. (2002). Total hydrolysis of xylotetrose and xylobiose by soluble and cross-linked crystalline xylanase II from Trichoderma reesei. Biocatalysis and Biotransformation, 20, 281–290.

    Article  CAS  Google Scholar 

  14. Juturu, V., & Wu, J. C. (2014). Microbial exo-xylanases: a mini review. Applied Biochemistry and Biotechnology, 174, 81–92.

    Article  CAS  Google Scholar 

  15. Collins, T., Gerday, C., & Feller, G. (2005). Xylanases families and extremophiles. FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  16. De Vries, R. P., & Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews, 65, 497–522.

    Article  Google Scholar 

  17. Tuncer, M., & Ball, A. S. (2003). Co-Operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat spelt xylan. Journal of Applied Microbiology, 94, 1030–1035.

    Article  CAS  Google Scholar 

  18. Sorensen, H. R., Pedersen, S., & Meyer, A. S. (2007). Synergistic enzyme mechanisms and effects of sequential enzyme additions on degradation of water insoluble wheat arabinoxylan. Enzyme and Microbial Technology, 40, 908–918.

    Article  CAS  Google Scholar 

  19. Saghir, S., Iqbal, M. S., Hussain, M. A., Koschella, A., & Heinze, T. (2008). Structure characterization and carboxymethylation of arabinoxylan isolated from ispaghula (Plantago ovata) seed husk. Carbohydrate Polymers, 74, 309–317.

    Article  CAS  Google Scholar 

  20. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  21. Lombard, V., Golaconda, R. H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZY) in 2013. Nucleic Acids Research, 42, D490–D495.

    Article  CAS  Google Scholar 

  22. Henrissat, B., Callebau, I., Fabrega, S., Lehn, P., Mornon, J. P., & Davies, G. (1995). Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proceedings of the National Academy of Sciences of the United States of America, 92, 7090–7094.

    Article  CAS  Google Scholar 

  23. Henrissat, B., & Davies, G. (2000). Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiology, 124, 1515–1519.

    Article  CAS  Google Scholar 

  24. Henrissat, B., & Davies, G. (1997). Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology, 7, 637–644.

    Article  CAS  Google Scholar 

  25. Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosil hydrolases. Structure, Cambridge, 3, 853–859.

    Article  CAS  Google Scholar 

  26. Henrissat, B. A. (1991). Classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical Journal, 280, 309–316.

    Article  CAS  Google Scholar 

  27. Coutinho, P. M., & Henrissat, B. (1999). In carbohydrate-active enzymes: an integrated database approach. In H. J. Gilbert, G. Davies, H. Henrissat, & B. Svensson (Eds.), Recent advances in carbohydrate bioengineering (pp. 3–12). Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  28. Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13, 345–351.

    Article  CAS  Google Scholar 

  29. Screenath, H. K., & Jeffries, T. W. (2000). Production of ethanol form wood hydrolysate by yeasts. Bioresource Technology, 72, 253–260.

    Article  Google Scholar 

  30. Liu, C. F., Sun, R. C., Qin, M., Hang, A. P., Ren, J. L., Xub, F., & Wu, S. B. (2006). Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride. Industrial Crops and Products, 26, 212–219.

    Article  CAS  Google Scholar 

  31. Van Rensburg, P., Strauss, M. L., Lambrechts, M. G., Cordero Otero, R. R., & Pretorius, I. S. (2007). The heterologous expression of polysaccharidase-encoding genes, with oenological relevance in Saccharomyces cerevisiae. Journal of Applied Microbiology, 103, 2248–2257.

    Article  CAS  Google Scholar 

  32. Kulkarni, N., Shendye, A., & Mala, R. (1999). Molecular aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  33. Medeiros, R. G., Hanada, R., & Ferreira-Filho, E. X. (2003). Production of xylan-degrading enzymes from Amazon forest fungal species. International Biodeterioration and Biodegradation, 52, 97–100.

    Article  CAS  Google Scholar 

  34. Ahuja, S., Ferreira, G., & Moreira, A. (2004). Utilization of enzymes for environmental applications. Critical Reviews in Biotechnology, 24, 125–154.

    Article  CAS  Google Scholar 

  35. Camacho, N. A., & Aguiar, O. G. (2003). Production, purification and characterization of a low molecular mass xylanase from Aspergillus sp. and its application in bakery. Applied Biochemistry and Biotechnology, 104, 159–172.

    Article  CAS  Google Scholar 

  36. Mussato, S. L., & Mancilla, I. M. (2007). Non-digestible oligosaccharides: a review. Carbohydrate Polymers, 68, 587–597.

    Article  CAS  Google Scholar 

  37. Sheu, W. H. H., Lee, I. T., Chen, W., & Chan, Y. C. (2008). Effects of xylooligosaccharides in type 2 diabetes mellitus. Journal of Nutritional Science and Vitaminology, 54, 396–401.

    Article  CAS  Google Scholar 

  38. Chen, L. L., Zhang, M., Zhang, D. H., Chen, X. L., Sun, C. Y., Zhou, B. C., & Zhang, Y. Z. (2009). Purification and enzymatic characterization of two β-endoxylanases from Trichoderma Sp K9301 and their actions in xylooligosaccharide production. Bioresource Technology, 100, 5230–5236.

    Article  CAS  Google Scholar 

  39. Kallel, F., Driss, D., Chaabouni, S. E., & Ghorbel, R. (2015). Biological activities of xylooligosaccharides generated from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK. Applied Biochemistry and Biotechnology, 175, 950–964.

    Article  CAS  Google Scholar 

  40. Gibson, G. R. (2004). Prebiotics. Best Practice & Research. Clinical Gastroenterology, 18, 287–298.

    Article  Google Scholar 

  41. Camargo, D., Sene, L., Saraiva Variz, S., & Felipe, M. G. A. (2015). Xylitol bioproduction in hemicellulosic hydrolysate obtained from sorghum forage biomass. Applied Biochemistry and Biotechnology, 175, 3628–3642.

    Article  CAS  Google Scholar 

  42. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  43. Benassi, V. M., Silva, T. M., Pessela, B. C., Guisan, J. M., Mateo, C., Lima, M. S., Jorge, J. A., & Polizeli, M. L. T. M. (2013). Immobilization and biochemical properties of a β-xylosidase activated by glucose-xylose from Aspergillus niger USP-67 with transxylosylation activity. Journal of Molecular Catalysis B: Enzymatic, 89, 93–101.

    Article  CAS  Google Scholar 

  44. Bhattacharya, A., & Pletschke, B. I. (2014). Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enzyme and Microbial Technology, 61–62, 17–27.

    Article  CAS  Google Scholar 

  45. Koshland, D. E. (1953). Stereochemistry and the mechanism of enzymatic reactions. Biological Reviews of the Cambridge Philosophical Society, 28, 416–436.

    Article  CAS  Google Scholar 

  46. McCarter, J. D., & Withers, S. G. (1994). Mechanisms of enzymatic glycoside hydrolysis. Current Opinion in Structural Biology, 4, 885–892.

    Article  CAS  Google Scholar 

  47. Motomitsu, K., Yuji, H., Shinya, F., Masafumi, H., Takane, K., & Kenji, Y. (2009). Conversion of inverting glycoside hydrolases into catalysts for synthesizing glycosides employing a glycosynthase strategy. Trends in Glycoscience and Glycotechnology, 21, 23–39.

    Article  CAS  Google Scholar 

  48. Ravanal, M. C., Alegría-Arcos, M., Gonzales-Nilo, F. D., & Eyzaguirre, J. (2013). Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: biochemical and structural analyses explain the difference. Archives of Biochemistry and Biophysics, 540, 117–124.

    Article  CAS  Google Scholar 

  49. Whiters, S. G. (2001). Mechanisms of glycosyl transferases and hydrolases. Carbohydrate Polymers, 44, 325–337.

    Article  Google Scholar 

  50. Czjzek, M., David, A. B., Bravman, T., Shoham, G., Henrissat, B., & Shoham, Y. (2005). Enzyme substrate complex structures of a GH39 β-xylosidase from Geobacillus stearothermophilus. Journal of Molecular Biology, 353, 838–846.

    Article  CAS  Google Scholar 

  51. Smaali, I., Rémond, C., & O’donohue, M. J. (2006). Expression in Escherichia coli and characterization of β-xylosidases GH39 and GH-43 from Bacillus halodurans C-125. Applied Microbiology and Biotechnology, 73, 582–590.

    Article  CAS  Google Scholar 

  52. Unger, E. G., Durrant, J., Anson, D. S., & Hopwood, J. J. (1994). Recombinant alpha-l-iduronidase: characterization of the purified enzyme and correction of mucopolysaccharidosis type I fibroblast. The Biochemical Journal, 304, 43–49.

    Article  CAS  Google Scholar 

  53. Kitamoto, N., Yoshino, S., Ohmiya, N., & Tsukagoshi, N. (1999). Sequence analysis, overexpression, and antisense inhibition of a β-xylosidase gene, xylA, from Aspergillus oryzae KBN616. Applied and Environmental Microbiology, 65, 20–24.

    CAS  Google Scholar 

  54. Dekker, R. F., & Richards, G. N. (1976). Hemicellulases: their occurrence, purification, properties, and mode of action. Advances in Carbohydrate Chemistry and Biochemistry, 32, 277–352.

    Article  CAS  Google Scholar 

  55. Kim, Y. A., & Yoon, K. H. (2010). Characterization of a Paenibacillus woosongensis β-xylosidase-α-arabinofuranosidase produced by recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 20, 1711–1716.

    CAS  Google Scholar 

  56. Tsujibo, H., Takada, C., Tsuji, A., Kosaka, M., Miyamoto, K., & Inamori, Y. (2001). Cloning, sequencing, and expression of the gene encoding an intracellular β-D-xylosidase from Streptomyces thermoviolaceus Opc-520. Bioscience, Biotechnology, and Biochemistry, 65, 1824–1831.

    Article  CAS  Google Scholar 

  57. Santos, C. R., Polo, C. C., Corrêa, J. M., Simão, R. C. G., Seixas, F. A. V., & Murakami, M. T. (2012). Accessory domain changes accessibility and molecular topography of the catalytic interface in monomeric GH39 β-xylosidases. Acta Crystallographica Section D: Biological Crystallography, 68, 1339–1345.

    Article  CAS  Google Scholar 

  58. Contreras, L. M., Gómez, J., Prieto, J., Clemente-Jiménez, J. M., Las Heras-Vázquez, F. J., Rodríguez-Vico, F., Blanco, F. J., & Neira, J. L. (2008). The family 52 β-xylosidase from Geobacillus stearothermophilus is a dimer: structural and biophysical characterization of a glycoside hydrolase. Biochimica et Biophysica Acta, 1784, 1924–1934.

    Article  CAS  Google Scholar 

  59. Sakka, K., Yoshikawa, K., Kojima, Y., Karita, S., Ohmiya, K., & Shimada, K. (1993). Nucleotide sequence of the Clostridium stercorarium xylA gene encoding a bifunctional protein with β-D-xylosidase and α-L-arabinofuranosidase activities, and properties of the translated product. Bioscience, Biotechnology, and Biochemistry, 57, 268–272.

    Article  CAS  Google Scholar 

  60. Gottschalk, L. M. F., Paredes, R. S., Teixeira, R. S. S., Silva, A. S., & Bon, E. P. S. (2013). Efficient production of lignocellulolytic enzymes β-xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1B. Brazilian Journal of Microbiology, 44, 569–576.

    Article  CAS  Google Scholar 

  61. Anand, A., Kumar, V., & Satyanarayana, T. (2013). Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles, 17, 357–366.

    Article  CAS  Google Scholar 

  62. Díaz-Malváez, F. I., García-Almendárez, B. E., Hernández-Arana, A., Amaro-Reyes, A., & Regalado-González, C. (2013). Isolation and properties of β-xylosidase from Aspergillus niger GS1 using corn pericarp upon solid state fermentation. Process Biochemistry, 48, 1018–1024.

    Article  CAS  Google Scholar 

  63. El-Gindy, A. A., Saad, R. R., & Fawzi, M. E. (2015). Purification of β-xylosidase from Aspergillus tamarii using ground oats and a possible application on the fermented hydrolysate by Pichia stipitis. Annals of Microbiology, 65, 965–974.

    Article  CAS  Google Scholar 

  64. Nasr, S., Soudi, R. M., Salmanian, H. A., & Ghadam, P. (2013). Partial optimization of endo-1, 4-β-xylanase production by Aureobasidium pullulans using agro-industrial residues. Iranian Journal of Basic Medical Sciences, 16, 1245–1253.

    CAS  Google Scholar 

  65. Lasrado, L. D., & Gudipati, M. (2013). Purification and characterization of beta-D-xylosidase from Lactobacillus brevis grown on xylooligosaccharide. Carbohydrate Polymers, 92, 1978–1983.

    Article  CAS  Google Scholar 

  66. Jordan, B. D., Wagschal, K., Grigorescu, A. A., & Braker, D. J. (2013). Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates. Applied Microbiology and Biotechnology, 97, 4415–4428.

    Article  CAS  Google Scholar 

  67. Teng, C., Jia, H., Yan, Q., Zhou, P., & Jiang, Z. (2011). High-level expression of extracellular secretion of a β-xylosidase gene from Paecilomyces thermophila in Escherichia coli. Bioresource Technology, 102, 1822–1830.

    Article  CAS  Google Scholar 

  68. Suzuki, S., Fukuoka, M., Ookuchi, H., Sano, M., Ozeki, K., Nagayoshi, E., Takii, Y., Matsushita, M., Tada, S., Kusumoto, K., & Kashiwagi, Y. (2010). Characterization of Aspergillus oryzae glycoside hydrolase family 43 β-xylosidase expressed in Escherichia coli. Journal of Bioscience and Bioengineering, 109, 115–117.

    Article  CAS  Google Scholar 

  69. Chen, Z., Jia, H., Yang, Y., Yan, Q., Jiang, Z., & Teng, C. (2012). Secretory expression of a β-xylosidase gene from Thermomyces lanuginosus in Escherichia coli and characterization of its recombinant enzyme. Letters in Applied Microbiology, 55, 330–337.

    Article  CAS  Google Scholar 

  70. Huy, N. D., Thayumanavan, P., Kwon, T.-H., & Park, S.-M. (2013). Characterization of a recombinant functional xylosidase-arabinofuranosidase from Phanerochaete chrysosporium. Journal of Bioscience and Bioengineering, 116, 152–159.

    Article  CAS  Google Scholar 

  71. Huy, N. D., Nguyen, C. L., Jeong-Woo Seo, J.-W., Kim, D.-H., & Park, S.-M. (2015). Putative endoglucanase PcGH5 from Phanerochaete chrysosporium is a β-xylosidase that cleaves xylans in synergistic action with endo-xylanase. Journal of Bioscience and Bioengineering, 119, 416–420.

    Article  CAS  Google Scholar 

  72. Juturu, V., & Wu, J. C. (2013). Heterologous expression of β-xylosidase gene from Paecilomyces Thermophila in Pichia Pastoris. World Journal of Microbiology and Biotechnology, 29, 249–255.

    Article  CAS  Google Scholar 

  73. Kirikyali, N., & Connerton, I. F. (2014). Heterologous expression and kinetic characterization of Neurospora Crassa β-xylosidase in Pichia pastoris. Enzyme and Microbial Technology, 57, 63–68.

    Article  CAS  Google Scholar 

  74. Wongwisansri, S., Promdonkoy, P., Matetaviparee, P., Roongsawang, N., Eurwilaichitr, L., & Tanapongpipat, S. (2013). High-level production of thermotolerant β-Xylosidase of Aspergillus sp. bcc125 in Pichia pastoris: characterization and its application in ethanol production. Bioresource Technology, 132, 410–413.

    Article  CAS  Google Scholar 

  75. Yang, X., Shi, P., Huang, H., Luo, H., Wang, Y., Zhang, W., & Yao, B. (2014). Two xylose-tolerant gh43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chemistry, 148, 381–387.

    Article  CAS  Google Scholar 

  76. Lulko, A. T., Buist, G., Kok, J., & Kuipers, O. P. (2007). Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Journal of Molecular Microbiology and Biotechnology, 12, 82–95.

    Article  CAS  Google Scholar 

  77. Moreno, M. S., Schneider, B. L., Maile, R. R., Weyler, W., & Saier, M. H., Jr. (2001). Catabolite repression mediated by the CcpA protein in Bacillus subtilis, novel modes of regulation revealed by whole-genome analyses. Molecular Microbiology, 39, 1366–1381.

    Article  CAS  Google Scholar 

  78. Blencke, H. M., Homuth, G., Ludwig, H., Mäder, U., Hecker, M., & Stülke, J. (2003). Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metabolic Engineering, 5, 133–149.

    Article  CAS  Google Scholar 

  79. Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C. M., Matsunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., Nakayama, T., & Fujita, Y. (2001). Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Research, 29, 683–692.

    Article  CAS  Google Scholar 

  80. Galinier, A., Deutscher, J., & Martin-Verstraete, I. (1999). Phosphorylation of either Crh or Hpr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. Journal of Molecular Biology, 286, 307–314.

    Article  CAS  Google Scholar 

  81. Shi, H., Li, X., Gu, H., Zhang, Y., Huang, Y., Wang, L., & Wang, F. (2013). Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase-α-arabinosidase from Thermotoga thermarum. Biotechnology for Biofuels, 6, 27.

    Article  CAS  Google Scholar 

  82. Graciano, L., Corrêa, J. M., Gandra, R. F., Seixas, F. A., Kadowaki, M. K., Sampaio, S. C., Silva, J. L., Osaku, C. A., & Simão, R. C. G. (2012). The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-xylosidase I. World Journal of Microbiology and Biotechnology, 28, 2879–2888.

    Article  CAS  Google Scholar 

  83. Corrêa, J. M., Graciano, L., Abrahão, J., Loth, E. A., Gandra, R. F., Kadowaki, M. K., Henn, C., & Simão, R. C. G. (2012). Expression and characterization of a GH39 β-xylosidaseII from Caulobacter crescentus. Applied Biochemistry and Biotechnology, 168, 2218–2229.

    Article  CAS  Google Scholar 

  84. Zhang, S., Wang, H., Shi, P., Xu, B., Bai, Y., Luo, H., & Yao, B. (2014). Cloning, expression, and characterization of a thermostable β-xylosidase from thermoacidophilic Alicyclobacillus sp. A4. Process Biochemistry, 49, 1422–1428.

    Article  CAS  Google Scholar 

  85. Jain, I., Kumar, V., & Satyanarayana, T. (2014). Applicability of recombinant β-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. Bioresource Technology, 170, 462–469.

    Article  CAS  Google Scholar 

  86. Schumacher, M. A., Seidel, G., Hillen, W., & Brennan, R. G. (2007). Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. Journal of Molecular Biology, 368, 1042–1050.

    Article  CAS  Google Scholar 

  87. Galinier, A., Haiech, J., Kilhoffer, M. C., Jaquinod, M., Stulke, J., Deutscher, J., & Martin-Verstraete, I. (1997). The Bacillus subtilis Crh gene encodes a Hpr-like protein involved in carbon catabolite repression. Proceedings of the National Academy of Sciences of the United States of America, 94, 8439–8444.

    Article  CAS  Google Scholar 

  88. Mijakovic, I., Poncet, S., Galinier, A., Monedero, V., Fieulaine, S., Janin, J., Nessler, S., Marquez, J. A., Scheffzek, K., Hasenbein, S., Hengstenberg, W., & Deutscher, J. (2002). Pyrophosphate-producing protein dephosphorylation by hpr kinase/phosphorylase, a relic of early life? Proceedings of the National Academy of Sciences of the United States of America, 99, 13442–13447.

    Article  CAS  Google Scholar 

  89. Campos, E., Alvarez, M. J. N., Di Lorenzo, G. S., Gonzalez, S., Rorig, M., Talia, P., Grasso, D. H., Sáez, F., Secade, P. M., Perdices, M. B., & Cataldi, A. A. (2014). Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria. Microbiological Research, 169, 213–220.

    Article  CAS  Google Scholar 

  90. Gruninger, R. J., Gong, X., Forster, R. J., & Mcallister, T. A. (2014). Biochemical and kinetic characterization of the multifunctional β-glucosidase/β-xylosidase/α-arabinosidase, Bgxa1. Applied Microbiology and Biotechnology, 98, 3003–3012.

    Article  CAS  Google Scholar 

  91. Zhou, J., Bao, L., Chang, L., Liu, Z., You, C., & Lu, H. (2011). Beta-xylosidase activity of a GH3 glucosidase⁄xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Letters in Applied Microbiology, 54, 79–87.

    Article  CAS  Google Scholar 

  92. Vásquez, M. P., Da Silva, J. N. C., De Souza-Júnior, M. B., & Pereira-Júnior, N. (2007). Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology, 137, 141–153.

    Google Scholar 

  93. Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., & Walton, J. D. (2010). Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment-biomass feedstock combinations. Biotechnology for Biofuels, 3, 1–15.

    Article  CAS  Google Scholar 

  94. Hasmann, F. A., Pessoa, A., Jr., & Roberto, I. C. (2001). Screening of variables in β-xylosidase recovery using cetyl trimethyl ammonium bromide reversed micelles. Applied Biochemistry and Biotechnology, 91, 719–728.

    Article  Google Scholar 

  95. Zimbardi, A. L. R. L., Sehn, C., Meleiro, L. P., Souza, F. H. M., Masui, D. C., Nozawa, M. S. F., Guimarães, L. H. S., Jorge, J. A., & Furriel, R. P. M. (2013). Optimization of β-glucosidase, β-xylosidase and xylanase production by Colletotrichum graminicola undersolid-state fermentation and application in raw sugarcane trash saccharification. International Journal of Molecular Sciences, 14, 2875–2902.

    Article  CAS  Google Scholar 

  96. Singh, K. D., Schmalisch, M. H., Stulke, J., & Gorke, B. (2008). Carbon catabolite repression in Bacillus subtilis, quantitative analysis of repression exerted by different carbon sources. Journal of Bacteriology, 190, 7275–7284.

    Article  CAS  Google Scholar 

  97. Deutscher, J., Francke, C., & Postma, P. W. (2006). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Reviews, 70, 939–1031.

    Article  CAS  Google Scholar 

  98. Gorke, B., & Stulke, J. (2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Reviews Microbiology, 6, 613–624.

    Article  CAS  Google Scholar 

  99. Fujita, Y., Miwa, Y., Tojo, S., & Hirooka, K. (2007). Carbon catabolite control and metabolic networks mediated by the ccpa protein in Bacillus subtilis. In Y. Fujita (Ed.), Global regulatory networks in Bacillus subtilis (pp. 91–110). Trivandrum: Transworld Research Network.

    Google Scholar 

  100. Schumacher, M. A., Seidel, G., Hillen, W., & Brennan, R. G. (2006). Phosphoprotein Crh-Ser46-P displays altered binding to CcpA to effect carbon catabolite regulation. The Journal of Biological Chemistry, 281, 6793–6800.

    Article  CAS  Google Scholar 

  101. Singh, K. D., Halbedel, S., Görke, B., & Stülke, J. (2007). Control of the phosphorylation state of the hpr protein of the phosphotransferase system in Bacillus subtilis, implication of the protein phosphatase PrpC. Journal of Molecular Microbiology and Biotechnology, 13, 165–171.

    Article  CAS  Google Scholar 

  102. Reizer, J., Hoischen, C., Titgemeyer, F., Rivolta, C., Rabus, R., Stulke, J., Karamata, D., Saier, M. H., Jr., & Hillen, W. (1998). A novel protein kinase that controls carbon catabolite repression in bacteria. Molecular Microbiology, 27, 1157–1169.

    Article  CAS  Google Scholar 

  103. Ramstrom, H., Sanglier, S., Leize-Wagner, E., Philippe, C., Van Dorsselaer, A., & Haiech, J. (2003). Properties and regulation of the bifunctional enzyme Hpr kinase/phosphatase in Bacillus subtilis. The Journal of Biological Chemistry, 278, 1174–1185.

    Article  Google Scholar 

  104. Hogema, B. M., Arents, J. C., Bader, R., Eijkemans, K., Yoshida, H., Takahashi, H., Aiba, H., & Postma, P. W. (1998). Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Molecular Microbiology, 30, 487–498.

    Article  CAS  Google Scholar 

  105. Lindner, C., StuLke, J., & Hecker, M. (1994). Regulation of xylanolytic enzymes in Bacillus subtilis. Microbiology, 140, 753–757.

    Article  CAS  Google Scholar 

  106. Dahl, M. K., Degenkolb, J., & Hillen, W. (1994). Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs. Journal of Molecular Biology, 243, 413–424.

    Article  CAS  Google Scholar 

  107. Schmiedel, D., & Hillen, W. (1996). A Bacillus subtilis 168 mutant with increased xylose uptake can utilize xylose as sole carbon source. FEMS Microbiology Letters, 135, 175–178.

    Article  CAS  Google Scholar 

  108. Schmiedel, D., & Hillen, W. (1996). Contributions of xylR, CcpA, and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose. Molecular and General Genetics, 250, 259–266.

    CAS  Google Scholar 

  109. Kraus, A., Hueck, C., GaRtner, D., & Hillen, W. (1994). Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional XylR-dependent repression. Journal of Bacteriology, 176, 1738–1745.

    CAS  Google Scholar 

  110. Meyer, F. M., Jules, M., Mehne, F. M. P., Le Coq, D., Landmann, J. J., Görke, B., Aymerich, S., & Stülke, J. (2011). Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway. Journal of Bacteriology, 193, 6939–6949.

    Article  CAS  Google Scholar 

  111. Nierman, W. C., Feldblyum, T. V., Laub, M. T., Paulsen, I. T., Nelson, K. E., Eisen, J., et al. (2001). Complete genome sequence of Caulobacter crescentus. Proceedings of the National Academy of Sciences of the United States of America, 98, 4136–4141.

    Article  CAS  Google Scholar 

  112. Marks, M. E., Castro-Rojas, C. M., Teiling, C. D. U. L., Kapatral, V., Walunas, T. L., & Crosson, S. (2010). The genetics basis of laboratory adaptation in Caulobacter Crescentus. Journal of Bacteriology, 192, 3678–3688.

    Article  CAS  Google Scholar 

  113. Graciano, L., Corrêa, J. M., Vieira, F. G. N., Bosetto, A., Loth, E. A., Kadowaki, M. K., Gandra, R. F., & Simão, R. C. G. (2015). Cloning and expression of the xynA1 gene encoding a xylanase of the GH10 group in Caulobacter crescentus. Applied Biochemistry and Biotechnology, 175, 3915–3929.

    Article  CAS  Google Scholar 

  114. Hottes, A. K., Meewan, M., Yang, D., Arana, N., Romero, P., Mcadams, H. H., et al. (2004). Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. Journal of Bacteriology, 186, 1448–1461.

    Article  CAS  Google Scholar 

  115. Turatsinze, J. V., Thomas-Chollier, M., Defrance, M., & Van Helden, J. (2008). Using RSAT to scan genome sequences for transcription factor binding sites and cis regulatory modules. Nature Protocols, 3, 1578–1588.

    Article  CAS  Google Scholar 

  116. Evinger, M., & Agabian, N. (1977). Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. Journal of Bacteriology, 132, 294–301.

    CAS  Google Scholar 

  117. Stephens, C., Christen, B., Fuchs, T., Sundaram, V., Watanabe, K., & Jenal, U. (2007). Genetic analysis of a novel pathway for d-xylose metabolism in Caulobacter crescentus. Journal of Bacteriology, 189, 2181–2185.

    Article  CAS  Google Scholar 

  118. Stephens, C., Christen, B., Watanabe, K., Fuchs, T., & Jenal, U. (2007). Regulation of D-xylose metabolism in Caulobacter crescentus by a LacI-type repressor. Journal of Bacteriology, 189, 8828–8834.

    Article  CAS  Google Scholar 

  119. Jordan, D. B., & Wagschal, K. (2010). Properties and applications of microbial β-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium. Applied Microbiology and Biotechnology, 86, 1647–1658.

    Article  CAS  Google Scholar 

  120. Justo, P. I., Corrêa, J. M., Maller, A., Kadowaki, M. K., da Conceição-Silva, J. L., Gandra, R. F., & Simão, R. C. G. (2015). Analysis of the xynB5 gene encoding a multifunctional GH3-BglX β-glucosidase-β-xylosidases-α-arabinosidase member in Caulobacter crescentus. Antonie Van Leeuwenhoek, 108, 993–1007.

    Article  CAS  Google Scholar 

  121. Lagaert, S., Pollet, A., Courtin, C. M., & Volckaert, G. (2014). β-Xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnology Advances, 32, 316–332.

    Article  CAS  Google Scholar 

  122. Marui, J., Tanaka, A., Mimura, S., Graaff, L. H., Visser, J., Kitamoto, N., Kato, M., Kobayashi, T., & Tsukagoshi, N. (2002). A transcriptional activator, Aoxlnr, controls the expression of genes encoding xylanolytic enzymes in Aspergillus Oryzae. Fungal Genetics and Biology, 35, 157–169.

    Article  CAS  Google Scholar 

  123. Van Peij, N. N. M. E., Visser, J., & De Graaf, L. H. (1998). Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Molecular Microbiology, 27, 131–142.

    Article  Google Scholar 

  124. Van Peij, N. N. M. E., Gielkens, M. M. C., De Vries, R. P., Visser, J., & De Graaff, L. H. (1998). The transcriptional activator xlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Applied and Environmental Microbiology, 64, 3615–3619.

    Google Scholar 

  125. Van Peij, N. N., et al. (1997). β-Xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but 584 F.J. not for induction of the xylanolytic enzyme spectrum. European Journal of Biochemistry, 245, 164–173.

    Article  Google Scholar 

  126. Tamayo, E. N., Villanueva, A., Hasper, A. A., Graaff, L. H., Ramón, D., & Orejasm. (2008). CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genetics and Biology, 45, 984–993.

    Article  CAS  Google Scholar 

  127. Reen, F. J., Murray, P. G., & Tuohy, M. G. (2003). Molecular characterisation and expression analysis of the first hemicellulase gene (Bxl1) encoding β-xylosidase from the thermophilic fungus Talaromyces emersonii. Biochemical and Biophysical Research Communications, 305, 579–585.

    Article  CAS  Google Scholar 

  128. Hrmová, M., Biely, P., & Vršanská, M. (1986). Specificity of cellulase and β-xylanase induction in Trichoderma reesei Qm9414. Archives of Microbiology, 144, 307–311.

    Article  Google Scholar 

  129. Kristufek, D., Zeilinger, S., & Kubicek, C. P. (1995). Regulation of β-xylosidase formation by xylose in Trichoderma Reesei. Applied Microbiology and Biotechnology, 42, 713–771.

    Article  CAS  Google Scholar 

  130. Perez-Gonzalez, J. A., van Peij, N. N., Bezoen, A., MacCabe, A. P., Ramón, D., & de Graaff, L. H. (1998). Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a β-xylosidase. Applied and Environmental Microbiology, 64, 1412–1419.

    CAS  Google Scholar 

  131. Margolles-Clark, E., Ilmen, M., & Pentilla, M. (1997). Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. Journal of Biotechnology, 57, 167–179.

    Article  CAS  Google Scholar 

  132. Gong, C. S., Chen, L. F., Flickinger, M. C., Chiang, L. C., & Tsao, G. T. (1981). Production of ethanol from D-xylose by using D-xylose-isomerase and yeasts. Applied and Environmental Microbiology, 41, 430–436.

    CAS  Google Scholar 

  133. Li, Z., Qu, H., Li, C., & Zhou, X. (2013). Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Bioresource Technology, 149, 413–419.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.C.G. Simão was partially supported by grants from the Araucaria Foundation (process 630/2014). A. Bosetto and L. Graciano were Coordination fellows of Improvement of Higher Education Personnel (CAPES). E.L. Santos was a fellow of the Brazilian National Council for Scientific and Technological Development (CNPq). P.I. Justo is a professional funded by Diagnostics of America SA (DASA). S.S. Venzon is a professional funded by the Federal Technological University of Paraná.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita de Cássia Garcia Simão.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosetto, A., Justo, P.I., Zanardi, B. et al. Research Progress Concerning Fungal and Bacterial β-Xylosidases. Appl Biochem Biotechnol 178, 766–795 (2016). https://doi.org/10.1007/s12010-015-1908-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1908-4

Keywords

Navigation