Skip to main content
Log in

Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The hemicellulose xylan constitutes a major portion of plant biomass, a renewable feedstock available for conversion to biofuels and other bioproducts. β-xylosidase operates in the deconstruction of the polysaccharide to fermentable sugars. Glycoside hydrolase family 43 is recognized as a source of highly active β-xylosidases, some of which could have practical applications. The biochemical details of four GH43 β-xylosidases (those from Alkaliphilus metalliredigens QYMF, Bacillus pumilus, Bacillus subtilis subsp. subtilis str. 168, and Lactobacillus brevis ATCC 367) are examined here. Sedimentation equilibrium experiments indicate that the quaternary states of three of the enzymes are mixtures of monomers and homodimers (B. pumilus) or mixtures of homodimers and homotetramers (B. subtilis and L. brevis). k cat and k cat/K m values of the four enzymes are higher for xylobiose than for xylotriose, suggesting that the enzyme active sites comprise two subsites, as has been demonstrated by the X-ray structures of other GH43 β-xylosidases. The K i values for d-glucose (83.3–357 mM) and d-xylose (15.6–70.0 mM) of the four enzymes are moderately high. The four enzymes display good temperature (K t 0.5 ∼ 45 °C) and pH stabilities (>4.6 to <10.3). At pH 6.0 and 25 °C, the enzyme from L. brevis ATCC 367 displays the highest reported k cat and k cat/K m on natural substrates xylobiose (407 s−1, 138 s−1 mM−1), xylotriose (235 s−1, 80.8 s−1 mM−1), and xylotetraose (146 s−1, 32.6 s−1 mM−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z (2008) Structure of the two-subsite β-d-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane. Arch Biochem Biophys 474:157–166. doi:10.1016/j.abb.2008.03.007

    Article  CAS  Google Scholar 

  • Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D (2006) The structure of an inverting GH43 β-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. J Mol Biol 359:97–109. doi:10.1016/j.jmb.2006.03.005

    Article  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.1093/nar/gkn663

    Article  CAS  Google Scholar 

  • Demeler B (2004) UltraScan version 9.9. A comprehensive data analysis software package for analytical ultracentrifugation experiments. The University of Texas Health Science Center, Department of Biochemistry, San Antonio, TX

    Google Scholar 

  • Dodd D, Cann IK (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 1:2–17. doi:10.1111/j.1757-1707.2009.01004.x

    Article  CAS  Google Scholar 

  • Ducret A, Van Oostveen I, Eng JK, Yates JR III, Aebersold R (1998) High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci 7:706–719. doi:10.1002/pro.5560070320

    Article  CAS  Google Scholar 

  • Fan Z, Yuan L, Jordan DB, Wagschal K, Heng C, Braker JD (2010) Engineering lower inhibitor affinities in β-d-xylosidase. Appl Microbiol Biotechnol 86:1099–1113. doi:10.1007/s00253-009-2335-7

    Article  CAS  Google Scholar 

  • Himmel ME (ed) (2008) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell Publishing, Oxford

    Google Scholar 

  • Jordan DB (2008) β-d-Xylosidase from Selenomonas ruminantium: catalyzed reactions with natural and artificial substrates. Appl Biochem Biotechnol 146:137–149. doi:10.1007/s12010-007-8064-4

    Article  CAS  Google Scholar 

  • Jordan DB, Braker JD (2007) Inhibition of the two-subsite β-d-xylosidase from Selenomonas ruminantium by sugars: competitive, noncompetitive, double binding, and slow binding modes. Arch Biochem Biophys 465:231–246. doi:10.1016/j.abb.2007.05.016

    Article  CAS  Google Scholar 

  • Jordan DB, Braker JD (2009) β-d-Xylosidase from Selenomonas ruminantium: thermodynamics of enzyme-catalyzed and noncatalyzed reactions. Appl Biochem Biotechnol 155:330–346. doi:10.1007/s12010-008-8397-7

    Article  CAS  Google Scholar 

  • Jordan DB, Braker JD (2010) β-d-Xylosidase from Selenomonas ruminantium: role of glutamate 186 in catalysis revealed by site-directed mutagenesis, alternate substrates, and active-site inhibitor. Appl Biochem Biotechnol 161:395–410. doi:10.1007/s12010-009-8874-7

    Article  CAS  Google Scholar 

  • Jordan DB, Braker JD (2011) Opposing influences by subsite −1 and subsite +1 residues on relative xylopyranosidase/arabinofuranosidase activities of bifunctional β-d-xylosidase/α-l-arabinofuranosidase. Biochim Biophys Acta 1814:1648–1657. doi:10.1016/j.bbapap.2011.08.010

    Article  CAS  Google Scholar 

  • Jordan DB, Li X-L (2007) Variation in relative substrate specificity of bifunctional β-d-xylosidase/α-l-arabinofuranosidase by single-site mutations: roles of substrate distortion and recognition. Biochim Biophys Acta 1774:1192–1198. doi:10.1016/j.bbapap.2007.06.010

    Article  CAS  Google Scholar 

  • Jordan DB, Wagschal K (2010) Properties and applications of microbial β-d-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium. Appl Microbiol Biotechnol 86:1647–1658. doi:10.1007/s00253-010-2538-y

    Article  CAS  Google Scholar 

  • Jordan D, Li X-L, Dunlap C, Whitehead T, Cotta M (2007) Structure–function relationships of a catalytically efficient β-d-xylosidase. Appl Biochem Biotechnol 141:51–76. doi:10.1007/s12010-007-9210-8

    Article  CAS  Google Scholar 

  • Jordan DB, Mertens JA, Braker JD (2009) Aminoalcohols as probes of the two-subsite active site of β-d-xylosidase from Selenomonas ruminantium. Biochim Biophys Acta 1794:144–158. doi:10.1016/j.bbapap. 2008.09.015

    Article  CAS  Google Scholar 

  • Jordan DB, Wagschal K, Fan Z, Yuan L, Braker JD, Heng C (2011) Engineering lower inhibitor affinities in β-d-xylosidase of Selenomonas ruminantium by site-directed mutagenesis of Trp145. J Ind Microbiol Biotechnol 38:1821–1835. doi:10.1007/s10295-011-0971-2

    Article  CAS  Google Scholar 

  • Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442:241–252. doi:10.1042/BJ20111922

    Article  CAS  Google Scholar 

  • Leatherbarrow RJ (2001) GraFit version 5. Erithacus Software Limited, Horley, UK

    Google Scholar 

  • Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487–522. doi:10.1146/annurev.biochem.68.1.487

    Article  CAS  Google Scholar 

  • Rasmussen LE, Sørensen HR, Vind J, Viksø-Nielsen A (2006) Mode of action and properties of the β-xylosidases from Talaromyces emersonii and Trichoderma reesei. Biotechnol Bioeng 94:869–876. doi:10.1002/bit.20908

    Article  CAS  Google Scholar 

  • Saha BC (2001) Purification and characterization of an extracellular β-xylosidase from a newly isolated Fusarium verticillioides. J Ind Microbiol Biotechnol 27:241–245. doi:10.1038/sj/jim/7000189

    Article  CAS  Google Scholar 

  • Saha BC (2003) Purification and properties of an extracellular β-xylosidase from a newly isolated Fusarium proliferatum. Bioresour Technol 90:33–38. doi:10.1016/S0960-8524(03)00098-1

    Article  CAS  Google Scholar 

  • Speicher KD, Kolbas O, Harper S, Speicher DW (2000) Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biol Tech 11:74–86

    CAS  Google Scholar 

  • Subramaniam S (1998) The Biology Workbench—a seamless database and analysis environment for the biologist. Proteins 32:1–2. doi:10.1002/(SICI)1097-0134(19980701)32:1<1::AID-PROT1>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  • Wagschal K, Franqui-Espiet D, Lee CC, Robertson GH, Wong DW (2005) Enzyme-coupled assay for β-xylosidase hydrolysis of natural substrates. Appl Environ Microbiol 71:5318–5323. doi:10.1128/AEM.71.9.5318-5323.2005

    Article  CAS  Google Scholar 

  • Wagschal K, Franqui-Espiet D, Lee CC, Kibblewhite-Accinelli RE, Robertson GH, Wong DWS (2007) Genetic and biochemical characterization of an α-l-arabinofuranosidase isolated from a compost starter mixture. Enzyme Microb Technol 40:747–753. doi:10.1016/j.enzmictec.2006.06.007

    Article  CAS  Google Scholar 

  • Wagschal K, Heng C, Lee CC, Robertson GH, Orts WJ, Wong DWS (2009a) Purification and characterization of a glycoside hydrolase family 43 β-xylosidase from Geobacillus thermoleovorans IT-08. Appl Biochem Biotechnol 155:304–313. doi:10.1007/s12010-008-8362-5

    Article  CAS  Google Scholar 

  • Wagschal K, Heng C, Lee CC, Wong DWS (2009b) Biochemical characterization of a novel dual-function arabinofuranosidase/xylosidase isolated from a compost starter mixture. Appl Microbiol Biotechnol 81:855–863. doi:10.1007/s00253-008-1662-4

    Article  CAS  Google Scholar 

  • Wagschal K, Jordan DB, Braker JD (2012) Catalytic properties of β-d-xylosidase XylBH43 from Bacillus halodurans C-125 and mutant XylBH43-W147G. Process Biochem 47:366–372. doi:10.1016/j.procbio.2011.07.009

    Article  CAS  Google Scholar 

  • Xu WZ, Shima Y, Negoro S, Urabe I (1991) Sequence and properties of β-xylosidase from Bacillus pumilus IPO. Contradiction of the previous nucleotide sequence. Eur J Biochem 202:1197–1203. doi:10.1111/j.1432-1033.1991.tb16490.x

    Article  CAS  Google Scholar 

  • Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT (2008) A xylose-tolerant β-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresour Technol 99:5402–5410. doi:10.1016/j.biortech.2007.11.033

    Article  CAS  Google Scholar 

  • Yates JR III, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436. doi:10.1021/ac00104a020

    Article  CAS  Google Scholar 

  • Yates JR III, Morgan SF, Gatlin CL, Griffin PR, Eng JK (1998) Method to compare collision-induced dissociation spectra of peptides: potential for library searching and subtractive analysis. Anal Chem 70:3557–3565. doi:10.1021/ac980122y

    Article  CAS  Google Scholar 

  • Yoshida S, Hespen CW, Beverly RL, Mackie RI, Cann IKO (2010) Domain analysis of a modular α-l-arabinofuranosidase with a unique carbohydrate binding strategy from the fiber-degrading bacterium Fibrobacter succinogenes S85. J Bacteriol 192:5424–5436. doi:10.1128/JB.00503-10

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Trypsin digestion and LC-MS/MS analysis was performed at the Wistar Proteomics Facility. Sedimentation equilibrium experiments were conducted at Northwestern University, Keck Biophysics Facility, supported by a Cancer Center Grant (NCI CA060553). Mention of trade names or commercial products in this report is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Jordan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 713 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, D.B., Wagschal, K., Grigorescu, A.A. et al. Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates. Appl Microbiol Biotechnol 97, 4415–4428 (2013). https://doi.org/10.1007/s00253-012-4475-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4475-4

Keywords

Navigation