Skip to main content
Log in

Expression and Characterization of a GH39 β-Xylosidase II from Caulobacter crescentus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present work, the gene xynB2, encoding a β-xylosidase II of the Glycoside Hydrolase 39 (GH39) family, of Caulobacter crescentus was cloned and successfully overexpressed in Escherichia coli DH10B. The recombinant protein (CcXynB2) was purified using nickel-Sepharose affinity chromatography, with a recovery yield of 75.5 %. CcXynB2 appeared as a single band of 60 kDa on a sodium dodecyl sulfate polyacrylamide gel and was recognized by a specific polyclonal antiserum. The predicted CcXynB2 protein showed a high homology with GH39 β-xylosidases of the genus Xanthomonas. CcXynB2 exhibited an optimal activity at 55 °C and a pH of 6. CcXynB2 displayed stability at pH values of 4.5–7.5 for 24 h and thermotolerance up to 50 °C. The K M and V Max values were 9.3 ± 0.45 mM and 402 ± 19 μmol min−1 for ρ-nitrophenyl-β-d-xylopyranoside, respectively. The purified recombinant enzyme efficiently produced reducing sugars from birchwood xylan and sugarcane bagasse fibers pre-treated with a purified xylanase. As few bacterial GH39 family β-xylosidases have been characterized, this work provides a good contribution to this group of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmed, S., Riaz, S., & Jamil, A. (2009). Molecular cloning of fungal xylanases: an overview. Applied Microbiology and Biotechnology, 84, 19–35.

    Article  CAS  Google Scholar 

  2. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  3. Czjzek, M., David, A. B., Bravman, T., Shoham, G., Henrissat, B., & Shoham, Y. (2005). Enzyme-substrate complex structures of a GH39 β-xylosidase from Geobacillus stearothermophillus. Journal of Molecular Biology, 353, 838–846.

    Article  CAS  Google Scholar 

  4. White, A., & Rose, D. R. (1997). Mechanism of catalysis by retaining β-glycosyl hydrolases. Current Opinion in Structural Biology, 7, 645–651.

    Article  CAS  Google Scholar 

  5. Whiters, S. G. (2001). Mechanisms of glycosyl transferases and hydrolases. Carbohydrate Polymers, 44, 325–337.

    Article  Google Scholar 

  6. Smaali, I., Rémond, C., & O’Donohue, M. J. (2006). Expression in Escherichia coli and characterization of β-xylosidases GH39 and GH-43 from Bacillus halodurans C-125. Applied Microbiology and Biotechnology, 73, 582–590.

    Article  CAS  Google Scholar 

  7. Marks, M. E., Castro-Rojas, C. M., Teiling, C. D. U. L., Kapatral, V., Walunas, T. L., & Crosson, S. (2010). The genetics basis of laboratory adaptation in Caulobacter crescentus. Journal of Bacteriology, 192, 3678–3688.

    Article  CAS  Google Scholar 

  8. Juturu, V., & Wu, J. C. (2011). Microbial xylanases: engineering, production and industrial applications. Biotechnology Advances. doi:10.1016/j.biotechadv.2011.11.006.

  9. Santos, C. R., Polo, C. C., Corrêa, J. M., Simão, R. C. G., Seixas, F. A. V., & Murakami, M. T. (2012). Accessory domain changes accessibility and molecular topography of the catalytic interface in monomeric GH39 Beta-xylosidases. Acta Crystallographica Section D, 68, 1339–1345.

    Google Scholar 

  10. Graciano, L., Corrêa, J. M., Gandra, R. F., Seixas, F. A. V., Kadowaki, M. K., Sampaio, S. C., et al. (2012). The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-xylosidase I. World Journal of Microbiology and Biotechnology, 28(9), 2879–2888.

    Article  CAS  Google Scholar 

  11. Poindexter, J. S. (1964). Biological properties and classification of the Caulobacter group. Bacteriological Reviews, 28, 231–295.

    CAS  Google Scholar 

  12. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  13. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature, 226, 680–685.

    Article  Google Scholar 

  14. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76, 4350–4354.

    Article  CAS  Google Scholar 

  15. McIlvaine, T. C. (1921). A buffer solution for colorimetric comparison. Journal of Biological Chemistry, 49, 183–186.

    CAS  Google Scholar 

  16. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  17. Tuncer, M. (2000). Characterization of β-xylosidase and α-L-arabinofuranosidase activities from Thermomonospora fusca BD25. Turkish Journal of Biology, 24, 753–767.

    CAS  Google Scholar 

  18. Mai, J., Juergen, W., & Lorenz, W. W. (2000). Cloning, sequencing, and characterization of the bifunctional xylosidase–arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene, 247, 137–143.

    Article  CAS  Google Scholar 

  19. Yang, J. K., Yoon, H. J., Ahn, H. J., Lee, B. I., Pedelacq, J. D., Liong, E. C., et al. (2004). Crystal structure of β-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. Journal of Molecular Biology, 335, 155–165.

    Article  CAS  Google Scholar 

  20. Wagschal, K., Franqui-Espiet, D., Lee, C. C., Robertson, G. H., & Wong, D. W. (2005). Enzyme-coupled assay for β-xylosidase hydrolysis of natural substrates. Applied and Environmental Microbiology, 71, 5318–5323.

    Article  CAS  Google Scholar 

  21. Wagschal, K., Franqui-Espiet, D., Lee, C. C., & Wong, D. W. (2008). Cloning, expression and characterization of a glycoside hydrolase family 39 xylosidase from Bacillus halodurans C-125. Applied Biochemistry and Biotechnology, 146, 69–78.

    Article  CAS  Google Scholar 

  22. Evinger, M., & Agabian, N. (1977). Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. Journal of Bacteriology, 132, 294–301.

    CAS  Google Scholar 

  23. Gottschalk, L. M. F., Oliveira, R. A., & Bom, E. P. S. (2010). Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochemical Engineering Journal, 51, 72–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fundação Araucária (convênio 893/2012), Fundo Paraná SETI, CNPq, and Fundação Parque Tecnológico Itaipu (PTI C&T/FPTI-BR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita de Cássia Garcia Simão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrêa, J.M., Graciano, L., Abrahão, J. et al. Expression and Characterization of a GH39 β-Xylosidase II from Caulobacter crescentus . Appl Biochem Biotechnol 168, 2218–2229 (2012). https://doi.org/10.1007/s12010-012-9931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9931-1

Keywords

Navigation