Skip to main content
Log in

Microbial Exo-xylanases: A Mini Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exo-xylanases are a class of glycosyl hydrolases and play an important role in hydrolysis of xylan to xylose. They belong to glycosyl hydrolase (GH) family 8 with a characteristic (α/α)6 barrel fold in their molecular structures. These enzymes are generally produced by bacteria. Exceptionally, the endo-xylanases from Trichoderma reesei Rut C-30 and a few bacterial strains also show considerable exo-xylanase activities. Exo-xylanases are active on natural xylan substances, hydrolyzing long-chain xylo-oligomers from the reducing end to produce short-chain xylo-oligomers and xylose. Exo-xylanases usually show multiple enzyme functions such as β-xylosidase, exo-glucanase, β-glucosidase, and arabinofuranosidase activities, which are helpful for more efficient hydrolysis of xylan. The combined use of exo- and endo-xylanases can increase the xylose yield compared to using either of them alone. Screening new exo-xylanase-producing microbes, mining the enzyme coding sequences, genetically engineering the enzymes, and producing them in a large scale are recommended for their commercial applications in lignocellulose-based biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pérez, J., Muñoz-Dorado, J., de la Rubia, T., & Martínez, J. (2002). International Microbiology, 5, 53–63.

    Article  Google Scholar 

  2. Corral, O.L.,&Villaseñor-Ortega, F.(2006).Advances in Agricultural and Food Biotechnology Research, ed by G-G Ramón Gerardo and T-P Irineo. Research Signpost, Kerala, pp 305-322

  3. Sticklen, M. B. (2008). Nature Reviews Genetics, 9, 433–443.

    Article  CAS  Google Scholar 

  4. Kumar, R., Singh, S., & Singh, O. V. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  5. Bastawde, K. B. (1992). World Journal of Microbiology and Biotechnology, 8, 353–368.

    Article  CAS  Google Scholar 

  6. de Vries, R. P., & Visser, J. (2001). Microbiology and Molecular Biology Reviews, 65, 497–522.

    Article  Google Scholar 

  7. Shallom, D., & Shoham, Y. (2003). Current Opinion in Microbiology, 6, 219–228.

    Article  CAS  Google Scholar 

  8. Juturu, V., & Wu, J. C. (2013). Journal of Chemical Technology and Biotechnology, 88, 353–363.

    Article  CAS  Google Scholar 

  9. Juturu, V., & Wu, J. C. (2011). Biotechnology Advances, 30, 1219–1227.

    Article  Google Scholar 

  10. Ganju, R. K., Vithayathil, P. J., & Murthy, S. K. (1989). Canadian Journal of Microbiology, 35, 836–842.

    Article  CAS  Google Scholar 

  11. Kubata, B. K., Suzuki, T., Horitsu, H., Kawai, K., & Takamizawa, K. (1994). Applied and Environmental Microbiology, 60, 531–535.

    CAS  Google Scholar 

  12. Honda, Y., & Kitaoka, M. A. (2004). Journal of Biological Chemistry, 279, 55097–55103.

    Article  CAS  Google Scholar 

  13. Ghose, T. K., & Bisaria, V. S. (1987). Pure and Applied Chemistry, 59, 1739–1752.

    CAS  Google Scholar 

  14. Henrissat, B., & Davies, G. J. (1997). Current Opinion in Structural Biology, 7, 637–644.

    Article  CAS  Google Scholar 

  15. Fushinobu, S., Hidaka, M., Honda, Y., Wakagi, T., Shoun, H., & Kitaoka, M. (2005). Journal of Biological Chemistry, 280, 17180–17186.

    Article  CAS  Google Scholar 

  16. Gasparic, A., Martin, J., Daniel, A. S., & Flint, H. J. (1995). Applied and Environmental Microbiology, 61, 2958–2964.

    CAS  Google Scholar 

  17. Kubata, B. K., Takamizawa, K., Kawai, K., Suzuki, T., & Horitsu, H. (1995). Applied and Environmental Microbiology, 61, 1666–1668.

    CAS  Google Scholar 

  18. Usui, K., Ibata, K., Suzuki, T., & Kawai, K. (1999). Bioscience, Biotechnology, and Biochemistry, 63, 1346–1352.

    Article  CAS  Google Scholar 

  19. Puspaningsih, N. N. T., Suwanto, A., Suhartono, M. T., Achmadi, S., Yogiara, S., & Kimura, T. (2008). Journal of Basic Science, 9, 177–187.

    Google Scholar 

  20. Tenkanen, M., Vršanská, M., Siika-aho, M., Wong, D. W., Puchart, V., Penttilä, M., Saloheimo, M., & Biely, P. (2013). FEBS Journal, 280, 285–301.

    Article  CAS  Google Scholar 

  21. Collins, T., Meuwis, M.-A., Stals, I., Claeyssens, M., Feller, G., & Gerday, C. (2002). Journal of Biological Chemistry, 277, 35133–35139.

    Article  CAS  Google Scholar 

  22. Gallardo, O., Diaz, P., & Pastor, F. I. J. (2003). Applied Microbiology and Biotechnology, 61, 226–233.

    Article  CAS  Google Scholar 

  23. Huang, Z., Liu, X., Zhang, S., &Liu, Z. (2013). Journal of Industrial Microbiology and Biotechnology 1-10.

  24. Kubicek, C. P., Mikus, M., Schuster, A., Schmoll, M., & Seiboth, B. (2009). Biotechnology and Biofuels, 2, 19.

    Article  Google Scholar 

  25. Juturu, V., & Wu, J. C. (2013). World Journal of Microbiology and Biotechnology, 29, 249–255.

    Article  CAS  Google Scholar 

  26. Han, S. J., Yoo, Y. J., & Kang, H. S. (1995). JBC, 270, 26012–26019.

    Article  CAS  Google Scholar 

  27. Park, D. J., Lee, Y. S., Chang, J., Fang, S. J., & Choi, Y. L. (2013). Journal of Microbiology and Biotechnology, 23, 397–404.

    Article  CAS  Google Scholar 

  28. Usui, K., Suzuki, T., Akisaka, T., & Kawai, K. (2003). Journal of Bioscience and Bioengineering, 95, 488–495.

    Article  CAS  Google Scholar 

  29. Ko, K. C., Han, Y., Shin, B. S., Choi, J. H., & Song, J. J. (2012). Applied Biochemistry and Biotechnology, 167, 677–684.

    Article  CAS  Google Scholar 

  30. Tarayre, C., Brognaux, A., Brasseur, C., Bauwens, J., Millet, C., Mattéotti, C., Destain, J., Vandenbol, M., Portetelle, D., De Pauw, E., Haubruge, E., Francis, F., & Thonart, P. (2013). Applied Biochemistry and Biotechnology, 171, 225–245.

    Article  CAS  Google Scholar 

  31. Brito-Cunha, C. C., de Campos, I. T., de Faria, F. P., & Bataus, L. A. (2013). Applied Biochemistry and Biotechnology, 170, 598–608.

    Article  CAS  Google Scholar 

  32. Li, J., Zhang, H., Wu, M., Wang, C., Dong, Y., Zhu, L., & Zhang, P. (2014). Applied Biochemistry and Biotechnology, 172, 3476–3487.

    Article  CAS  Google Scholar 

  33. McClendon, S. D., Mao, Z., Shin, H. D., Wagschal, K., & Chen, R. R. (2012). Applied Biochemistry and Biotechnology, 167, 395–411.

    Article  CAS  Google Scholar 

  34. Lüthi, E., Love, D. R., McAnulty, J., Wallace, C., Caughey, P. A., Saul, D., & Bergquist, P. L. (1990). Applied and Environmental Microbiology, 56, 1017–1024.

    Google Scholar 

  35. Jankowitsch, F., Schwarz, J., Rückert, C., Gust, B., Szczepanowski, R., Blom, J., Pelzer, S., Kalinowski, J., & Mack, M. (2012). Journal of Bacteriology, 194, 6818–6827.

    Article  CAS  Google Scholar 

  36. Schell, M. A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M. C., Desiere, F., Bork, P., Delley, M., Pridmore, R. D., & Arigoni, F. (2002). Proceedings of the National Academy of Sciences of the United States of America, 99, 14422–14427.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR) of Singapore (SERC Grant no 1124004027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Chuan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juturu, V., Wu, J.C. Microbial Exo-xylanases: A Mini Review. Appl Biochem Biotechnol 174, 81–92 (2014). https://doi.org/10.1007/s12010-014-1042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1042-8

Keywords

Navigation