Skip to main content
Log in

Biological Activities of Xylooligosaccharides Generated from Garlic Straw Xylan by Purified Xylanase from Bacillus mojavensis UEB-FK

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A newly isolated Bacterium strain named UEB-FK was selected from Tunisian Sahara, exhibiting the highest clear zone on agar plates containing oat spelt xylan by staining with Congo red. On the basis of 16S rDNA sequence analysis, this strain was identified as Bacillus mojavensis. This strain produced extracellular xylanase. Xylanase from the strain was purified to homogeneity and had an apparent molecular weight of 14 kDa. The K m and V max values of the purified xylanase on oat spelt xylan were 3.85 mg/mL and 250.02 U/mg, respectively. The optimum pH and temperature for the enzyme were found to be 4.0 and 50 °C, respectively, and the enzyme exhibited significant heat stability. In addition, the enzyme was found to be stable in a wide range of pH (3–9). The main hydrolysis products yielded from garlic straw-extracted xylan were xylobiose and xylotriose. The antioxidant and antibacterial activities of xylan oligosaccharide (XOS) were investigated. As regards to the in vitro antioxidant activities, the XOS showed a important DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging activity (IC50 = 0.45 mg/mL) and a high β-carotene bleaching (IC50 = 2.2 mg/mL). Furthermore, XOS had a high antimicrobial activity against Klebsiella pneumoniae, Enterococcus faecalis, Bacillus thuringiensis, and Pseudomonas aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Puls, J., & Schuseil, J. (1993). In M. P., Coughlan & Hazlewood, G. P. (eds.), Hemicellulose and Hemicellulases (pp. 1–27). London: Portland Press.

  2. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology, 29, 3–23.

    Article  CAS  Google Scholar 

  3. Sapag, A., Wouters, J., Lambert, C., De Ioannes, P., Eyzaguirre, J., & Depiereux, E. (2002). Journal of Biotechnology, 95, 109–131.

    Article  CAS  Google Scholar 

  4. Poorna, C. A. (2011). Fermentation Technology, 1, 1.

    Google Scholar 

  5. Prakasha, B., Vidyasagara, M., Jayalakshmib, S. K., & Sreeramulua, K. (2012). Journal of Molecular Catalysis B: Enzymatic, 74, 192–198.

    Article  Google Scholar 

  6. Sprey, B., & Bochem, P. (1991). FEMS Microbiology Letters, 78, 183–188.

    Article  CAS  Google Scholar 

  7. Haki, G. D., & Rakshit, S. K. (2003). Bioresource Technology, 89, 17–34.

    Article  CAS  Google Scholar 

  8. Subramaniyan, S., & Prema, P. (2002). Critical Reviews in Biotechnology, 22, 33–64.

    Article  CAS  Google Scholar 

  9. Kuhad, R. C., Singh, A., & Eriksson, K. E. L. (1997). Advances in Biochemical Engineering/Biotechnology, 57, 47–125.

    Google Scholar 

  10. Bajpai, P. (2004). Critical Reviews in Biotechnology, 24, 1–58.

    Article  CAS  Google Scholar 

  11. Kulkarni, N., Shendye, A., & Rao, M. (1999). FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  12. Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  13. Beg, Q. K., Kapoor, M., Bhushan, B., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  14. Anand, A., Kumar, V., & Satyanarayana, T. (2013). Extremophiles, 17, 357–366.

    Article  CAS  Google Scholar 

  15. Driss, D., Zouari-Ellouzi, S., Chaari, F., Kallel, F., Ghazala, I., Bouaziz, F., Ghorbel, R., & Chaabouni, S. E. (2014). Journal of Molecular Catalysis B: Enzymatic, 102, 146–153.

    Article  CAS  Google Scholar 

  16. Mander, P., Choi, Y. H., Pradeep, G. C., Choi, Y. S., Hong, J. H., Cho, S. S., & Yoo, J. C. (2014). Process Biochemistry, 49, 451–456.

    Article  CAS  Google Scholar 

  17. Miller, J. H. (1972). Experiments in molecular genetics (pp. 431–435). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  18. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959). Analytical Biochemistry, 31, 426–428.

    CAS  Google Scholar 

  20. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  21. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  22. Kantham, L., & Jagannathan, V. (1985). Biotechnology and Bioprocess Engineering, 2, 786–791.

    Google Scholar 

  23. Ellouz, S. C., Mechichi, T., Limeme, F., & Merzouki, N. (1993). Journal of Biotechnology, 29, 229–242.

    Article  Google Scholar 

  24. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  25. Bersuder, P., Hole, M., & Smith, G. (1998). Journal of American Oil Chemistry Society, 75, 181–187.

    Article  CAS  Google Scholar 

  26. Koleva, I. I., Van Beek, T. A., Linssen, J. P. H., De Groot, A., & Evstatieva, L. N. (2002). Phytochemical Analysis, 13, 8–17.

    Article  CAS  Google Scholar 

  27. Vanden Berghe, D. A., & Vlietinck A. J. (1991). In Dey, P. M., & Harborne, J. B. (Ed.), Methods in plant biochemistry (6:47–67). London: Academic Press limited.

  28. Sa-Pereira, P., Mesquita, A., Duarte, J. C., Barros, M. R. A., & Costa-Ferreira, M. (2002). Enzyme and Microbial Technology, 30, 924–933.

    Article  CAS  Google Scholar 

  29. Radionova, N. A., Dubovaya, N. V., Eneiskaya, E. V., Matrinovich, L. I., Gracheva, I. M., & Bezborodov, A. M. (2000). Applied Microbiology and Biotechnology, 36, 460–465.

    Google Scholar 

  30. Gowdhaman, D., Manaswini, V. S., Jayanthi, V., Dhanasri, M., Jeyalakshmi, G., Gunasekar, V., Sugumaran, K. R., & Ponnusami, V. (2014). International Journal of Biological Macromolecules, 64, 90–98.

    Article  CAS  Google Scholar 

  31. Driss, D., Bhiri, F., Ghorbel, R., & Chaabouni, S. E. (2011). Brazilian Journal of Microbiology, 39, 535–541.

    Google Scholar 

  32. Bajaj, B. K., & Singh, N. P. (2010). Applied Biochemistry and Biotechnology, 162, 1804–1818.

    Article  CAS  Google Scholar 

  33. Giridhar, P. V., & Chandra, T. S. (2010). Process Biochemistry, 45, 1730–1737.

    Article  CAS  Google Scholar 

  34. Sepahy, A. A., Ghazi, S., & Sepahy, M. A. (2011). Enzyme Research, 2011, 1–9.

    Google Scholar 

  35. Bataillon, M., Cardinali, A. P. N., Castillon, N., & Duchiron, F. (2000). Enzyme and Microbial Technology, 26(187), 192.

    Google Scholar 

  36. Ninawe, S., Kapoor, M., & Kuhad, R. C. (2008). Bioresource Technology, 99, 1252–1258.

    Article  CAS  Google Scholar 

  37. Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2006). Enzyme and Microbial Technology, 39, 1492–1498.

    Article  CAS  Google Scholar 

  38. Heck, J. X., Barros Soares, L. H., Hertz, P. F., & Ayub, M. A. Z. (2006). Chemical and Biochemical Engineering, 32, 179–184.

    Article  CAS  Google Scholar 

  39. Okazaki, W., Akiba, T., Horikoshi, K., & Akahoshi, R. (1985). Agricultural and Biological Chemistry, 49, 2033–2039.

    Article  CAS  Google Scholar 

  40. Parajó, J. C., Garrote, G. J., Cruz, M., & Dominguez, H. (2004). Trends in Food Science & Technology, 15, 115–120.

    Article  Google Scholar 

  41. Kačuráková, M., & Mathlouthi, M. (1996). Carbohydrate Research, 284, 145–157.

    Article  Google Scholar 

  42. Akpinar, O., Ak, O., Kavas, A., Bakir, U., & Yilmaz, L. (2007). Journal of Agricultural and Food Chemistry, 55, 5544–5551.

    Article  CAS  Google Scholar 

  43. Aachary, A. A., & Prapulla, S. G. (2009). Bioresource Technology, 100, 991–995.

    Article  CAS  Google Scholar 

  44. Akpinar, O., Erdogan, K., & Bostanci, S. (2009). Food and Bioproducts Processing, 87, 145–151.

    Article  CAS  Google Scholar 

  45. Samanta, A. K., Senani, S., Kolte, A. P., Sridhar, M., Sampath, K. T., Jayapal, N., & Devi, A. (2012). Food and Bioproducts Processing, 90, 466–474.

    Article  CAS  Google Scholar 

  46. Ding, C. H., Jiang, Z. Q., Li, X. T., Li, L. T., & Kusakabe, I. (2004). World Journal of Microbiology and Biotechnology, 20, 7–10.

    Article  CAS  Google Scholar 

  47. Veenashri, B. R., & Muralikrishna, G. (2011). Food Chemistry, 126, 1475–1481.

    Article  CAS  Google Scholar 

  48. Faithong, N., Benzakul, S., Phatcharat, S., & Binsan, W. (2010). Food Chemistry, 119, 133–140.

    Article  CAS  Google Scholar 

  49. Christakopoulos, P., Katapodis, P., Kalogeris, E., Kekos, D., Macris, B. J., Stamatis, H., & Skaltsa, H. (2003). International Journal of Biological Macromolecules, 31, 171.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We extend our gratitude to Prof. Hafed Mejdoub (FSS, Sfax, Tunisia) for the determination of the N-terminal sequence. This work was supported financially by the “Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la Technologie-Tunisia” through a grant to “Unité Enzyme et Bioconversion–ENIS.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Kallel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallel, F., Driss, D., Chaabouni, S.E. et al. Biological Activities of Xylooligosaccharides Generated from Garlic Straw Xylan by Purified Xylanase from Bacillus mojavensis UEB-FK . Appl Biochem Biotechnol 175, 950–964 (2015). https://doi.org/10.1007/s12010-014-1308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1308-1

Keywords

Navigation