Skip to main content
Log in

Purification of β-xylosidase from Aspergillus tamarii using ground oats and a possible application on the fermented hydrolysate by Pichia stipitis

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

In this study we determined that Aspergillus tamarii Kita is able to utilize Avena sativa L. (oats) for the production of β-xylosidase under static or shaking conditions in submerged liquid-state (LSF), solid-state (SSF) and slurry-state (SlSF) cultures. The produced enzyme was purified and characterized. Maximum yield occurred under shaking conditions in SSF cultures (33.7 U/ml), with 24.9 and 5.5 U/ml produced in SISF and LSF cultures, respectively. Peptone was found to be the best nitrogen additive and enhanced enzyme production (41.5 U/ml). The produced enzyme was precipitated by ammonium sulfate (60 %) and further purified by gel filtration through a Sephadex G-100 and ion exchange column of diethylaminoethyl cellulose, with a yield of 40.57 % and 35.73-fold purification. Enzyme activity was optimal at pH 5.5 and 55 °C. The purified enzyme retained full activity even at the end of a 1-h incubation at this optimal condition. Midpoint of thermal inactivation (Tm) was recorded at 60 °C after 90 min of exposure. The Michaelis–Menten constant, maximal reaction velocity, turnover number and specificity constant of the purified enzyme were calculated to be 0.075 mg/ml, 71.42 U/mg of protein, 7.14/S and 95.2 mg/ml/s, respectively. The inability of the purified enzyme to hydrolyze celluloses indicated that the enzyme was a free cellulase. The most efficient enzyme activators were Mg2+, followed by Mn2+ and Zn2+ in that order. The molecular mass of the purified enzyme was 91 kDa as determined by SDS-PAGE. The possibility of using the fermentation of ground oat hydrolysate for the production of ethanol and xylitol in the presence of Pichia stipitis Pignal was assessed. The maximum production of ethanol and xylitol were obtained after 72 h of fermentation, resulting in 11.06 and 21.51 g/l respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig. 6

Similar content being viewed by others

References

  • Agbogbo F, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylosefermenting yeast, Pichia stipitis. Biotechnol Lett 30(9):1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  • Biswas SR, Mishra AK, Nanda G (1988) Xylanase and p-xylosidase production by Aspergillus ochraceus during growth on lignocelluloses. Biotechnol Bioeng 31:613–616

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annu Rev Plant Physiol Plant Mol Biol 72:248–254

    CAS  Google Scholar 

  • Carmona EC, Pizzironi-Kleiner AA, Monteiro RTR, Jorge JA (1997) Xylanase production by Aspergillus versicolor. J Basic Microbiol 38:387–394

    Article  Google Scholar 

  • Comlekcioglu U, Aygan A, Yazdic FC, Ozkose E (2011) Effects of various agro-wastes on xylanase and b-xylosidase production of anaerobic ruminal fungi. J Sci Ind Res 70:293–299

    CAS  Google Scholar 

  • Coughlan MP, Hazlewood GP (1993) β-1,4-d-Xylan degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289

    CAS  PubMed  Google Scholar 

  • De-Gregorio A, Mandalari G, Arena N, Nucita F, Tripodo MM, Lo Curto RB (2002) SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Biores Technol 83:89–94

    Article  CAS  Google Scholar 

  • Fadel M (2001) High-level xylanase production from sorghum flour by a newly isolate of Trichoderma harzianum cultivated under solid state fermentation. Ann Microbiol 51:61–78

    CAS  Google Scholar 

  • Fawzi EM (2009) Purification and characterization of the pectin lyase and protease produced by Penicillium velutinum grown on Eichhornia crassipes under solid state fermentation. Ann Microbiol 59(4):755–761

    Article  CAS  Google Scholar 

  • Fawzi EM (2010) Highly thermostable purified xylanase from Rhizomucor miehei NRRL 3169. Ann Microbiol 60(2):363–368

    Article  CAS  Google Scholar 

  • Fawzi EM (2011) Comparative study of Two purified inulinases from thermophile Thielavia terrestris NRRL 8126 and mesophile aspergillus foetidus NRRL 337 grown on Cichorium intybus L. Braz J Microbiol 42:633–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira G, Boer CG, Peralta RM (1999) Production of xylanolytic enzymes by Aspergillus tamarii in solid state fermentation. FEMS Microbiol Lett 173:335–339

    Article  CAS  Google Scholar 

  • Garcia-Campayo V, Wood TM (1993) Purification and characterization of a b-D-xylosidase from the anaerobic rumen fungus Neomallimastix frontalis. Carbohydr Res 242:229–245

    Article  CAS  PubMed  Google Scholar 

  • Ghindea R, Csutak O, Stoica I, Tanase AM, Vassu T (2010) Production of xylitol by yeasts. Roman Biotechnol Lett 15(3):5217–5222

    CAS  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: A review. Bioresour Technol 101:4775–4800

    Article  CAS  PubMed  Google Scholar 

  • Glantz AS (1992). Primer of biostatistics. McGraw Hill, New York

  • Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S (1996) Production of fungal xylanases. Bioresour Technol 58:137–161

    Article  CAS  Google Scholar 

  • Hamilton LM, Kelly CT, Fogarty WM (1998) Raw starch degradation by the non-raw starch-adsorbing bacterial alpha amylase of Bacillus sp. IMD. Carbohydr Res 314:251–257

    Article  CAS  Google Scholar 

  • Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80(4):675–684

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki MK, Souza CGM, Simão RCP, Eralta RM (1997) Xylanase production by Aspergillus tamarii. Appl Biochem Biotechnol 66:97–106

    Article  CAS  Google Scholar 

  • Kanna M, Yano S, Inoue H, Fujii T, Sawayama S (2011) Enhancement of b-xylosidase productivity in cellulase producing fungus Acremonium cellulolyticus. AMB Express 30:1–15

    Google Scholar 

  • Kim JD (2005) Production of xylanolytic enzyme complex from Aspergillus flavus using agricultural wastes. Mycobiology 33(2):84–89

    Article  PubMed Central  PubMed  Google Scholar 

  • Kiss T, Kiss L (2000) Purification and characterization of an extracellular b-D-xylosidase from Aspergillus carbonarius. World J Microbiol Biotechnol 16:465–470

    Article  CAS  Google Scholar 

  • Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  PubMed  Google Scholar 

  • Kurian JK, Ashok MK, Banerjee A, Kishore VVN (2010) Bioconversion of hemicellulose hydrolysate of sweet sorghum bagasse to ethanol by using Pichia stipitis NCIM 3497 and Debaryomyces hansenii sp. Bioresources 5(4):2404–2416

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Latif F, Rojoka MI (2001) Production of ethanol and xylitol from corn cobs by yeasts. Biores Technol 77:57–63

    Article  CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Martínez-Montero C, Rodríguez-Dodero MC, Guillén-Sánchez DA, Barroso CG (2004) Analysis of low molecular weight carbohydrates in food and beverages: a review. Chromatograhia 59:15–30

    Google Scholar 

  • Nojiri S, Taguchi N, Oishi M, Suzuki S (2000) Determination of sugar alcohols in confectioneries by high-performance liquid chromatography after nitrobenzoylation. J Chromatogr A 893:195–200

    Article  CAS  PubMed  Google Scholar 

  • Oliver G, Colicchio T (2012). The Oxford companion to Beer. Oxford University Press, Oxford

  • Palmer T (1991) Extraction and purification of enzymes. In: Palmer T (ed) Understanding enzymes. Ellis Horwood, Chichester, pp 301–317

  • Panbangred W, Shinmayo A, Kinoshita S, Okada H (1983) Purification and properties of endoxylanase produced by Bacillus pumilus. Agric Biol Chem 47:957–963

    Article  CAS  Google Scholar 

  • Pandey A (1994) Solid state fermentation: an overview. In: Pandey A (ed) Solid state fermentation. Wiley Eastern, New Deli, pp 3–10

  • Peterson EA, Sober HA (1962) Column chromatography of protein: substituted cellulases. In: Colowich S, Kapllan N (eds) Methods in enzymology, vol 5. Wiley, New York, pp 3–27

    Google Scholar 

  • Puls J, Schröder N, Stein A, Janzon R, Saake B (2006) Xylans from oat spelts and birch kraft pulp. Macromol Symp 232:85–92

  • Reid ID (1983) Effects of nitrogen sources on cellulose and synthetic lignin degradation by Phanerochaete chrysosporiumt. Appl Environ Microbiol 45(3):838–842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saad RR, Fawzi EM (2012) Purification and characterization of a thermostable α-galactosidase from Thielavia terrestris NRRL 8126 in solid state fermentation. Acta Hung Biol (63) 1:138–150

  • Saake B, Erasmy N, Kruse T, Schmekal E, Puls J (2003) Isolation and characterization of arabinoxylan from oat spelts. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. ACS symposium series, vol 864. American Chemical Society, Washington DC, pp 52–65

  • Saha BC (2003) Purification and properties of an extracellular b-xylosidase from a newly isolated Fusarium proliferatum. Biores Technol 90:33–38

    Article  CAS  Google Scholar 

  • Sakai S, Tsuchida Y, Okino S, Ichihashi O, Kawaguchi H, Watanabe T (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73(7):2349–2353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (2002) The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J Chem Technol Biotechnol 77:641–648

    Article  CAS  Google Scholar 

  • Semenova MV, Drachevskaya MI, Sinitsyna OA, Gusakov AV, Sinitsyn AP (2009) Isolation and properties of extracellular beta-xylosidases from fungi Aspergillus japonicus and Trichoderma reesei. Biogeosciences 74(9):1002–1008

    CAS  Google Scholar 

  • Shi H, Li X, Gu H, Zhang Y, Huang Y, La W, Wang F (2013) Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol Biofuels 6(1):27–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terrasan CRF, Temer B, Sarto C, Silva Júnior FG, Carmona EC (2013) Xylanase and β-xylosidase from penicillium janczewskii: production, physico-chemical properties, and application of the crude extract to pulp biobleaching,”. BioRes 8(1):1292–1305

    Article  Google Scholar 

  • Tuohy MG, Puls J, Claeysens M, Vrsanska M, Coughlan MP (1993) The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl b-D-xylosides and unsubstituted xylans. Biochem J 290:515–523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Usvalampi A (2013) Microbial production of xylitol, l-xylulose and l-xylose. PhD thesis. School of Chemical Technology, Aalto University, Helsinki

  • Wang HH (1999) A review: Development and/or reclamation of bioresources with solid state fermentation. Proc Natl Sci Counc ROC (B) 23(2):45–61

    CAS  Google Scholar 

  • Wang R, Ji Y, Melikoglu M, Keutions A, Webb C (2007) Optimization of innovative ethanol production from wheat by responce surface methodology. Proc Saf Environ Protect 85(B5):404–412

    Article  CAS  Google Scholar 

  • Wong KKY, Saddler JN (1992) Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12:413–435

    Article  CAS  Google Scholar 

  • Zhou J, Bao L, Chang L, Liu Z, You C, Lu H (2012) Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 54(2):79–87

    Article  CAS  PubMed  Google Scholar 

  • Zimbardi ALRL, Sehn C, Meleiro LP, Souza FHM, Masui DC, Nozawa MSF, Guimarães LHS, Jorge JA, Furriel RPM (2013) Optimization of ß-glucosidase, ß-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int J Mol Sci 14(2):2875–2902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Mohammed Fawzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gindy, A.A., Saad, R.R. & Fawzi, E.M. Purification of β-xylosidase from Aspergillus tamarii using ground oats and a possible application on the fermented hydrolysate by Pichia stipitis . Ann Microbiol 65, 965–974 (2015). https://doi.org/10.1007/s13213-014-0940-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0940-x

Keywords

Navigation