Skip to main content
Log in

Cloning of a new LEA1 gene promoter from soybean and functional analysis in transgenic tobacco

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

LEA1 gene from Glycine max can be expressed in late-embryo stage of plants, and respond to salinity and dehydration stress. To elucidate the mechanism for stress tolerance and high expression in seeds, we isolated and characterized the promoter of LEA1 gene (EQ, 1997 bp) starting the 5′LEA1 coding region. A deletion mutant of EQ promoter (ED) and the full length promoter (EQ) were fused to GUS reporter gene and transformed into the tobacco leaf discs. The results indicated that expression of the reporter gene (GUS) could be regulated by EQ promoter, and was stronger than the mutant under the stress conditions. Also, the expression level of GUS gene driven by EQ promoter in transgenic tobacco seeds was significantly higher than that by the mutant promoter, which meant that it had a better tissue-specificity. Therefore, the active domain for the promoter was located between −1997 and −1000 bp. Additionally, the activity of EQ promoter was 2.1-, 3.3- and 0.4- times stronger than the activity of promoter CaMV35S under salt (24 h), drought (10 h) or ABA (24 h), respectively. Meanwhile, the GUS activity of EQ promoter in seeds was 1.8-fold stronger compared to the promoter CaMV35S. In summary, the new promoter (EQ) is bi-functional, stress-inducible and seed-specific. These findings provide a further understanding for the regulation of LEA1gene expression, and suggest a new way for improving seed quality under saline and alkaline land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acharya S, Ranjan R, Pattanaik S, Maiti IB, Dey N (2014) Efficient chimeric plant promoters derived from plant infecting viral promoter sequences. Planta 239:381–396. doi:10.1007/s00425-013-1973-2

    Article  CAS  PubMed  Google Scholar 

  • Amara I, Odena A, Oliveira E, Moreno A, Masmoudi K, Pagès M, Goday A (2012) Insights into maize LEA proteins: from proteomics to functional approaches. Plant Cell Physiol 53:312–329. doi:10.1093/pcp/pcr183

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Yang Q, Kang J, Sun Y, Gruber M, Chao Y (2012) Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1. Mol Biol Rep 39:2883–2892. doi:10.1007/s11033-011-1048-z

    Article  CAS  PubMed  Google Scholar 

  • Ditzer A1, Bartels D (2006) Identification of a dehydration and ABA-responsive promoter regulon and isolation ofcorresponding DNA binding proteins forthe group 4 LEA geneCpC2 from C. Plantagineum. Plant Mol Biol 61(4–5):643–663. doi:10.1007/s11103-006-0038-3

    PubMed  Google Scholar 

  • Bi H, Luang S, Li Y, Bazanova N, Morran S, Song Z, Perera MA, Hrmova M, Borisjuk N, Lopato S (2016) Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. J Exp Bot 67(18):5363–5380. doi:10.1093/jxb/erw298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Campos F, Cuevas-Velazquez C, Fares MA, Reyes JL, Covarrubias AA (2013) Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Mol Genet Genom 288:503–517. doi:10.1007/s00438-013-0768-2

    Article  CAS  Google Scholar 

  • Cao J, Li X (2015) Identification and phylogenetic analysis of late embryogenesis abundant proteins family in tomato (Solanum lycopersicum). Planta 241:757–772. doi:10.1007/s00425-014-2215-y

    Article  CAS  PubMed  Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957. doi:10.1007/s11248-011-9577-8

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Jiang BJ, Wu CX, Sun S, Hou WS, Han TF (2015) The characterization of GmTIP, a root-specific gene from soybean, and the expression analysis of its promoter. Plant Cell Tiss Organ Cult 121:259–274. doi:10.1007/s11240-014-0682-2

    Article  CAS  Google Scholar 

  • Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W (2016) Over expression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PloS ONE 11(4):e0153494. doi:10.1371/journal.pone.0153494

    Article  PubMed  PubMed Central  Google Scholar 

  • Décima Oneto C, Otegui ME, Baroli I, Beznec A, Faccio P, Bossio E, Blumwald E, Lewi D (2016) Water deficit stress tolerance in maize conferred by expression of an isopentenyl transferase (IPT) gene driven by a stress- and maturation-induced promoter. J Biol Technol 220:66–77. doi:10.1016/j.jbiotec.2016.01.014

    Google Scholar 

  • Du DL, Zhang QX, Cheng TG, Pan HT, Yang WR, Sun LD (2013) Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 40:1937–1946. doi:10.1007/s11033-012-2250-3

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525. doi:10.1007/s10265-011-0412-3

    Article  CAS  PubMed  Google Scholar 

  • He S, Tan L, Hu Z, Chen G, Wang G, Hu T (2012) Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol Genet Genom 287:39–54. doi:10.1007/s00438-011-0660-x

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180. doi:10.1038/303179a0

    Article  CAS  Google Scholar 

  • Hou JJ, Jiang PP, Qi SM, Zhang K, He QX, Xu CZ, Ding ZH, Zhang KW, Li KP (2016) Isolation and functional validation of salinity and osmotic stress inducible promoter from the maize type-II H+ pyrophosphatase gene by deletion analysis in transgenic tobacco plants. PloS One 11(4):e0154041. doi:10.1371/journal.pone.0154041

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu XW, Liu SX, Guo JC, Li JT, Duan RJ, Fu SP (2009) Embryo and anther regulation of the mabinlin II sweet protein gene in Capparis masaikai Lévl. Funct Integr Genom 9:351–361. doi:10.1007/s10142-009-0117-z

    Article  CAS  Google Scholar 

  • Huang SX, Gao YF, Liu JK, Peng XL, Niu XL, Fei ZJ, Cao SQ, Liu YS (2012) Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genom 287:495–513. doi:10.1007/s00438-012-0696-6

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3091–3907

    Google Scholar 

  • Jyothsnakumari G, Thippeswamy M, Veeranagamallaiah G, Sudhakar C (2009) Differential expression of LEA proteins in two genotypes of mulberry under salinity. Biol Plant 53:145–150. doi:10.1007/s10535-009-0022-2

    Article  CAS  Google Scholar 

  • Kim MJ, Kim H, Shin JS, Chung CH, O hlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR inron. Mol Genet Genom 276:351–368. doi:10.1007/s00438-006-0148-2

    Article  CAS  Google Scholar 

  • Kim MJ, Kim JK, Shin JS, Suh MC (2007) The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E- and G-box elements. Plant Mol Biol 64:453–466. doi:10.1007/s11103-007-9165-8

    Article  CAS  PubMed  Google Scholar 

  • Kumar GM, Mamidala P, Podile AR (2009) Regulation of Polygalacturonase-inhibitory proteins in plants is highly dependent on stress and light responsive elements. Plant Omics 2:238–249. doi:10.1016/j.bbapap

    Google Scholar 

  • Lan Y, Cai D, Zheng YZ (2005) Expression in Escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance. J Integr Plant Biol 47:613–621

    Article  CAS  Google Scholar 

  • Li XS, Zhang DY, Li HY, Wang YC, Zhang YM, Wood AY (2014) EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 14:44. doi:10.1186/1471-2229-14-44

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Xiong ZY, Zheng JX, Xu DY, Zhu ZY, Xiang J, Gan JP, Raboanatahiry N, Yin YT, Li MT (2016) Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep 6:24265. doi:10.1038/srep24265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling J, Jiang WJ, Zhang Y, Yu HJ, Mao ZC, Gu XF, Huang SW, Xie BY (2011) Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genom 12:471. doi:10.1186/1471-2164-12-471

    Article  CAS  Google Scholar 

  • Liu GB, Xu H, Zhang L, Zheng YZ (2011) Fe binding properties of two soybean (Glycine max L.) LEA4 proteins associated with antioxidant activity. Plant Cell Physiol 52:994–1002. doi:10.1093/pcp/pcr052

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D (2013) ZmLEA3, a multifunctional Group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959. doi:10.1093/pcp/pct047

    Article  CAS  PubMed  Google Scholar 

  • Liu AL, Yu Y, Li RT, Duan XB, Zhu D, Sun XL, Duanmu HZ, Zhu YM (2015) A novel hybrid proline-rich type gene GsEARLI17 from Glycine soja participated in leaf cuticle synthesis and plant tolerance to salt and alkali stresses. Plant Cell Tiss Organ Cult 121:633–646. doi:10.1007/s11240-015-0734-2

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408 doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Zhang GF, Deng W, Luo FT, Qiu K, Pei Y (2008) Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco. Plant Cell Rep 27:707–717. doi:10.1007/s00299-007-0482-9

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Li MY, Wang F, Tang J, Xiong AS (2015) Genome-wide analysis of Dof family transcription Factors and their responses to abiotic stresses in Chinese cabbage. BMC Genom 16:33. doi:10.1186/1471-2164-12-47

    Article  CAS  Google Scholar 

  • Maiti S, Patro S, Pal A, Dey N (2015) Identification of a novel salicylic acid inducible endogenous plant promoter regulating expression of CYR1, a CC-NB-LRR type candidate disease resistance gene in Vigna mungo. Plant Cell Tiss Organ Cult 120:489–505. doi:10.1007/s11240-014-0616-z

    Article  CAS  Google Scholar 

  • Pan Y, Ma X, Liang H, Zhao Q, Zhu D, Yu J (2015) Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128. Planta 241:57–67. doi:10.1007/s00425-014-2164-5

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa AM, Martins CdeP, Gonçalves LP, Costa MG (2015) Late embryogenesis abundant (lea) constitutes a large and diverse family ofproteinsinvolved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.). PLoS ONE 10(12):e0145785. doi:10.1371/journal.pone.0145785

    Article  PubMed  PubMed Central  Google Scholar 

  • Phan TT, Sun B, Niu JQ, Tan QL, Li J, Yang LT, Li YR (2016) Over expression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Plant Cell Rep 35:1891–1905. doi:10.1007/s00299-016-2004-0

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Reddy GM, Pandey P, Chandrasekhar K, Reddy MK (2012) Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol Biol Rep 39:7163–7174. doi:10.1007/s11033-012-1548-5

    Article  CAS  PubMed  Google Scholar 

  • Sahoo DK, Sarkar S, Raha S, Maiti IB, Dey N (2014) Comparative analysis of synthetic DNA promoters for high-level gene expression in plants. Planta 240:855–875. doi:10.1007/s00425-014-2135-x

    Article  CAS  PubMed  Google Scholar 

  • Shih MD, Hsieh TY, Jian WT, Wu MT, Yang SJ, Hoekstra FA, Hsing YI (2012) Functional studies of soybean (Glycine max L.) seed LEA proteins GmPM6, GmPM11, and GmPM30 by CD and FTIR spectroscopy. Plant Sci 196:152–159. doi:10.1016/j.plantsci.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  • Shinde S, Shinde R, Downey F, Ng CK (2013) Abiotic stress-induced oscillations in steady-state transcript levels of Group 3 LEA protein genes in the moss, Physcomitrella patens. Plant Signal Behav 8:e22535. doi:10.4161/psb.22535

    Article  PubMed  Google Scholar 

  • Su L, Zhao CZ, Bi YP, Wan SB, Xia H, Wang XJ (2011) Isolation and expression analysis of LEA genes in peanut (Arachis hypogaea L.). J Biosci 36:223–228. doi:10.1007/s12038-011-9058-5

    Article  PubMed  Google Scholar 

  • Sunkara S, Bhatnagar-Mathur P, Sharma KK (2014) Isolation and functional characterization of a novel seed-specific promoter region from peanut. App Biochem Biotechnol 172:325–339. doi:10.1007/s12010-013-0482-x

    Article  CAS  Google Scholar 

  • Swire-Clark GA, Marcotte WR Jr (1999) The wheat LEA protein Em functions as an osmo protective molecule in Saccahromyces cerevisiae. Plant Mol Biol 39:117–128. doi:10.1023/A:1006106906345

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Ikeda K, Miyasaka H (2004) Isolation of a new member of group 3 late embryogenesis abundant protein gene from a halo tolerant green alga by a functional expression screening with cyanobacterial cells. FEMS Microbiol Lett 236:41–45. doi:10.1016/j.femsle

    Article  CAS  PubMed  Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2014) The transcriptional regulatory mechanism of the peroxisomal ascorbate peroxidase (pAPX) gene cloned from an extreme halophyte, Salicornia brachiata. Plant Cell Physiol 55:201–217. doi:10.1093/pcp/pct172

    Article  CAS  PubMed  Google Scholar 

  • Wang YW, Wang WC, Jin SH, Wang J, Wang B, Hou BK (2012) Over-expression of a putative poplar glycosyltransferase gene, PtGT1, in tobacco increases lignin content and causes early flowering. J Exp Bot 63(7):2799–2808. doi:10.1093/jxb/ers001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei ZG, Qu ZS, Zhang LJ, Zhao SJ, Bi ZH, Ji XH, Wang XW, Wei HR (2015) Over expression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height. PLoS ONE 10(3):e0120669. doi:10.1371/journal.pone.0120669

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie CJ, Zhang BB, Wang D, Kou F, Zhao X, Yang X (2011) Molecular cloning and characterization of an achene-seed-specific promoter from motherwort (Leonurus japonicus Houtt). Biotechnol Lett 33:167–172. doi:10.1007/s10529-010-0392-8

    Article  CAS  PubMed  Google Scholar 

  • Xu MY, You JF, Hou NN, Zhang HM, Chen G, Yang ZM (2010) Mitochondrial enzymes and citrate transporter contribute to the aluminium-induced citrate secretion from soybean (Glycine max) roots. Funct Plant Biol 37:285–295. doi:10.1071/FP09223

    Article  CAS  Google Scholar 

  • Yin G, Xu H, Liu J, Gao C, Sun J, Yan Y, Hu Y (2014) Screening and identification of soybean seed-specific genes by using integrated bioinformatics of digital differential display, microarray, and RNA-seq data. Gene 546:177–186. doi:10.1016/j.gene

    Article  CAS  PubMed  Google Scholar 

  • Zavallo D, Lopez Bilbao M, Hopp HE, Heinz R (2010) Isolation and functional Characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.). Plant Cell Rep 29:239–248. doi:10.1007/s00299-010-0816-x

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Shao SL, Sha W, Zhao Y, Zhang J, Ren WW, Zhang C (2017) Over expression o soybean GmERF9 enhances the tolerance to drought and cold in transgenic tobacco. Plant Cell Tiss Organ Cult 128:607–618. doi:10.1007/s11240-016-1137-8

    Article  CAS  Google Scholar 

  • Zhang J, Martin JM, Beecher B, Morris CF, Hannah LC, Giroux MJ (2009) Seed-specific expression of the wheat puroindoline genes improves maize wet milling yields. Plant Biotechnol J 7(8):733–743. doi:10.1111/j.1467-7652.2009

  • Zhao P, Liu F, Ma M, Gong J, Wang Q, Jia P, Zheng G, Liu H (2011) Over expression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana. Mol Biol (Mosk) 45:851–862. doi:10.1134/S0026893311050165

    Google Scholar 

  • Zhao Y, Shao SL, Li XW, Zhai Y, Zhang QL, Qian DD, Wang QY (2012) Isolation and activity analysis of a seed-abundant soyAP1 gene promoter from soybean. Plant Mol Biol Report 30:1400–1407. doi:10.1007/s11105-012-0441-7

    Article  CAS  Google Scholar 

  • Zheng TC, Li S, Zang LN, Dai LJ, Yang CP, Qu GZ (2014) Over expression of Two PsnAP1 Genes from Populus simonii × P. nigra causes early flowering in transgenic tobacco and Arabidopsis. PLoS ONE 9(10):e111725. doi:10.1371/journal.pone.0111725

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou YD, Hong R, He S, Liu GB, Huang ZB, Zheng YZ (2011) Polyproline II structure is critical forthe enzyme protective function of soybean Em (LEA1) conserved domains. Biotechnol Lett 33:1667–1673. doi:10.1007/s10529-011-0602-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Heilongjiang province (C201458), Government talent training program (UNPYSCT-2016090), National Nature Science Foundation (31570207), Natural Science Foundation of Heilongjiang province (ZD201408) and National Nature Science Foundation (31301335).

Author contributions

Conceived and designed the overall study -YZ, WS, YW; performed experiments -YZ, YW, LQ, YZ, YZ, MJZ; analyzed the data -YZ, WS, YZ; wrote the manuscript -YZ, WS, LQ, YZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, Y., Liu, Q. et al. Cloning of a new LEA1 gene promoter from soybean and functional analysis in transgenic tobacco. Plant Cell Tiss Organ Cult 130, 379–391 (2017). https://doi.org/10.1007/s11240-017-1234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1234-3

Keywords

Navigation