Skip to main content
Log in

Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Coping with different kinds of biotic and abiotic stresses is the foundation of sustainable agriculture. Although conventional breeding and marker-assisted selection are being employed in mulberry (Morus indica L.) to develop better varieties, nonetheless the longer time periods required for these approaches necessitates the use of precise biotechnological approaches for sustainable agriculture. In an attempt to improve stress tolerance of mulberry, an important plant of the sericulture industry, an encoding late embryogenesis abundant gene from barley (HVA1) was introduced into mulberry plants by Agrobacterium-mediated transformation. Transgenic mulberry with barley Hva1 under a constitutive promoter actin1 was shown to enhance drought and salinity tolerance. Here, we report that overexpression of barley Hva1 also confers cold tolerance in transgenic mulberry. Further, barley Hva1 gene under control of a stress-inducible promoter rd29A can effectively negate growth retardation under non-stress conditions and confer stress tolerance in transgenic mulberry. Transgenic lines display normal morphology to enhanced growth and an increased tolerance against drought, salt and cold conditions as measured by free proline, membrane stability index and PSII activity. Protein accumulation was detected under stress conditions confirming inductive expression of HVA1 in transgenics. Investigations to assess stress tolerance of these plants under field conditions revealed an overall better performance than the non-transgenic plants. Enhanced expression of stress responsive genes such as Mi dnaJ and Mi 2-cysperoxidin suggests that Hva1 can regulate downstream genes associated with providing abiotic stress tolerance. The investigation of transgenic lines presented here demonstrates the acquisition of tolerance against drought, salt and cold stress in plants overexpressing barley Hva1, indicating that Arabidopsis rd29A promoter can function in mulberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Babu RC, Zhang J, Blum A, Ho T-HD, Wu R, Nguyen HT (2004) HVA1 a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA, Madkour M (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427

    Article  CAS  Google Scholar 

  • Bajii M, Kinet JM, Luts S (2002) The use of electrolyte leakage method for assessing the cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Reg 36:61–70

    Article  Google Scholar 

  • Baker NR (1991) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81:563–570

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Behnam B, Kikuchi A, Celebi-Toprak F, Yamanaka S, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN (2006) The Arabidopsis DREB1A gene driven by the stress-inducible Rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotechnol J 23:169–177

    Article  CAS  Google Scholar 

  • Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN (2007) Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep 26:1275–1282

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Khurana P (2003) Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy. Plant Cell Rep 21:669–675

    PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi M, Reddy D, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma K (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  PubMed  CAS  Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci 100:1–10

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Gallardo J, Navarrete A, Olave N, Martinez J, Alberdi M, Close TJ, Corcuera LJ (2003) Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol Plant 118:262–269

    Article  CAS  Google Scholar 

  • Bray E (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (ed) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

  • Chauhan H, Khurana P (2011) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9:408–417

    Article  PubMed  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y, Yun SJ, de los Reyes BG (2007) An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics 8:175

    Article  PubMed  Google Scholar 

  • Cherian S, Reddy MP, Ferreira RB (2006) Transgenic plants with improved dehydration-stress tolerance: progress and future prospects. Biol Plant 50:481–495

    Article  CAS  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R–2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for post-transcriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Houde M, Rassart E, Sarhan F (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant Gramineae species. FEBS Lett 344:20–24

    Article  PubMed  CAS  Google Scholar 

  • Das M, Chauhan H, Chhibbar A, Rizwanul Haq QM, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246

    Article  PubMed  CAS  Google Scholar 

  • Dure L (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  PubMed  CAS  Google Scholar 

  • Farooq S, Azam F (2006) The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J Plant Physiol 163:629–637

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA, Zs-Nagy I (1984) Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a fenton reaction. Biochem Biophys Acta 790:94–97

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barley hva1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep 26:467–477

    Article  PubMed  CAS  Google Scholar 

  • Guha A, Sengupta D, Reddy AR (2010) Physiological optimality, allocation trade-offs and antioxidant protection linked to better leaf yield performance in drought exposed mulberry. J Sci Food Agric 90:2649–2659

    Article  PubMed  CAS  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hong BU, Uknes SJ, Ho T-HD (1988) Cloning and characterization of a cDNA encoding a mRNA rapidly induced by ABA in barley aleurone layers. Plant Mol Biol 11:495–506

    Article  CAS  Google Scholar 

  • Hong B, Barg R, Ho T-HD (1992) Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol 18:663–674

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8:583–593

    Article  PubMed  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999a) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci USA 96:13566–13570

    Article  PubMed  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999b) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol 30:679–684

    Article  PubMed  CAS  Google Scholar 

  • Jin ZL, Tian T, Naeem MS, Jilani G, Zhang F, Zhou WJ (2011) Chlorophyll fluorescence responses to application of new herbicide BZJ0273 in winter oilseed rape species. Int J Agric Biol 13:43–50

    Google Scholar 

  • Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11:2291–2301

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  PubMed  CAS  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J 7:512–526

    Article  PubMed  CAS  Google Scholar 

  • Kazuoka T, Oeda K (1994) Purification and characterization of COR85-Oligomeric complex from cold-acclimated spinach. Plant Cell Physiol 35:601–611

    CAS  Google Scholar 

  • Khurana P, Checker VG (2011) The advent of genomics in mulberry and perspectives for productivity enhancement. Plant Cell Rep 30:825–838

    Article  PubMed  CAS  Google Scholar 

  • Khurana P, Vishnudasan D, Chhibbar AK (2008) Genetic approaches towards overcoming water deficit in plants-special emphasis on LEAs. Physiol Mol Biol Plants 14:277–298

    Article  CAS  Google Scholar 

  • Kim S, Nam K (2010) Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep 29:203–209

    Article  PubMed  CAS  Google Scholar 

  • Kim CS, Lee CH, Shin JS, Chung YS, Hyung NI (1997) A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res 25:1085–1086

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Kim MD, Choi YI, Park SC, Yun DJ, Noh EW, Lee HS, Kwak SS (2011) Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnol J 9:334–347

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D, Agoston B, Tompa P (2008) Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav 3:710–713

    Article  PubMed  Google Scholar 

  • Lal S, Khurana P (2009) Differential screening for salinity tolerance in high yielding Indian mulberry, Morus indica genotypes. Sericologia 49:353–371

    Google Scholar 

  • Lal S, Bhatnagar S, Khurana P (2006) Screening of Indian mulberry for abiotic stress tolerance and ameliorative effect of calcium on salinity stress. Physiol Mol Biol Plants 12:193–199

    CAS  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Maqbool B, Zhong H, El-Maghraby Y, Ahmad A, Chai B, Wang W, Sabzikar R, Sticklen B (2002) Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. Theor Appl Genet 105:201–208

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochem Biophys Acta 1767:414–421

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T (2007) Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144:513–523

    Article  PubMed  CAS  Google Scholar 

  • Oraby HF, Ransom CB, Kravchenko AN, Sticklen MB (2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci 45:2218–2227

    Article  CAS  Google Scholar 

  • Ouellet F, Vazquez-Tello A, Sarhan F (1998) The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett 423:324–328

    Article  PubMed  CAS  Google Scholar 

  • Parkhi V, Kumar V, Sunilkumar G, Campbell LM, Singh NK, Rathore KS (2009) Expression of apoplastically secreted tobacco osmotin in cotton confers drought tolerance. Mol Breed 23:625–639

    Article  CAS  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  PubMed  CAS  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra Reddy A, Chaitanya KV, Jutur PP, Sumithra K (2004) Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ Exp Bot 52:33–42

    Article  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    Article  CAS  Google Scholar 

  • RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiological and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–420

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants—biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29:131–151

    Article  PubMed  CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  PubMed  CAS  Google Scholar 

  • Su J, Shen Q, Ho T-HD, Wu R (1998) Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol 117:913–922

    Article  PubMed  CAS  Google Scholar 

  • Sutton F, Ding X, Kenefick DG (1992) Group 3 LEA gene HVA 1 regulation by cold acclimation and deacclimation in two barley cultivars with varying freeze resistance. Plant Physiol 99:338–340

    Article  PubMed  CAS  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Takahashi R, Shimosaka E (1997) cDNA sequence analysis and expression of two cold-regulated genes in soybean. Plant Sci 123:93–104

    Article  CAS  Google Scholar 

  • Tewari A, Bhatnagar S, Khurana P (1999) In vitro response of commercially valuable varieties of Morus sp. to Thidizuron and activated charcoal. Plant Biotechnol 16:413–417

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book 8:e0140 10.1199/tab.0140

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Tennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  PubMed  CAS  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    PubMed  CAS  Google Scholar 

  • Zhao J, Ren W, Zhi D, Wang L, Xia G (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Zhichang Z, Wanrong Z, Jinping Y, Jianjun Z, Xufeng LZL, Yang Y (2010) Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl-stress tolerance. Afr J Biotechnol 9:972–978

    Google Scholar 

  • Zhou X, Yuan Y, Yang Y, Rutzke M, Thannhauser TW, Kochian LV, Li L (2009) Involvement of a broccoli COQ5 methyltransferase in the production of volatile selenium compounds. Plant Physiol 151:528–540

    Article  PubMed  CAS  Google Scholar 

  • Zivy M, Thiellement H, de Vienne D, Hofmann JP (1983) Study on nuclear and cytoplasmic genomic expression in wheat by two-dimentional gel electrophoresis. Theor Appl Genet 66:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants received from the Department of Biotechnology (DBT), Government of India, New Delhi. V.G.C. acknowledges University Grants Commission (UGC) for the award of a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Khurana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (PPT 2656 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Checker, V.G., Chhibbar, A.K. & Khurana, P. Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21, 939–957 (2012). https://doi.org/10.1007/s11248-011-9577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9577-8

Keywords

Navigation