Skip to main content
Log in

Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Late embryogenesis abundant (LEA) protein family is a large protein family that protects other proteins from aggregation due to desiccation or osmotic stresses. A cDNA clone encoding a group 7 late embryogenesis abundant protein, termed PgLEA, was isolated from Pennisetum glaucum by screening a heat stress cDNA library. PgLEA cDNA encodes a 176 amino acid polypeptide with a predicted molecular mass of 19.21 kDa and an estimated isoelectric point of 7.77. PgLEA shares 70–74% sequence identity with other plant homologs. Phylogenetic analysis revealed that PgLEA is evolutionarily close to the LEA 7 group. Recombinant PgLEA protein expressed in Escherichia coli possessed in vitro chaperone activity and protected PgLEA-producing bacteria from damage caused by heat and salinity. Positive correlation existed between differentially up-regulated PgLEA transcript levels and the duration and intensity of different environmental stresses. In silico analysis of the promoter sequence of PgLEA revealed the presence of a distinct set of cis-elements and transcription factor binding sites. Transcript induction data, the presence of several putative stress-responsive transcription factor binding sites in the promoter region of PgLEA, the in vitro chaperone activity of this protein and its protective effect against heat and salt damage in E. coli suggest a role in conferring abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

LEA:

Late embryogenesis abundant

Pg:

Pennisetum glaucum

References

  1. Baker J, Den Steele C, Dure L III (1988) Sequence and characterization of 6 LEA proteins and their genes from cotton. Plant Mol Biol 11:277–291

    Article  CAS  Google Scholar 

  2. Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19:1580–1589

    Article  PubMed  CAS  Google Scholar 

  3. Machuka J, Bashiardes S, Ruben E, Spooner K, Cuming A, Knight C, Cove D (1999) Sequence analysis of expressed sequence tags from an ABA-treated cDNA library identifies stress response genes in the moss Physcomitrella patens. Plant Cell Physiol 40:378–387

    Article  PubMed  CAS  Google Scholar 

  4. Reynolds TL, Bewley JD (1993) Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium virginianum: comparison of the effects of drying, rehydration and abscisic acid. J Exp Bot 44:921–928

    Article  CAS  Google Scholar 

  5. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  6. Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  PubMed  Google Scholar 

  7. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  Google Scholar 

  8. Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    Article  CAS  Google Scholar 

  9. Illing N, Denby KJ, Collett H, Shen A, Farrant JM (2005) The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol 45:771–787

    Article  PubMed  CAS  Google Scholar 

  10. Boudet J, Buitink J, Hoekstra FA, Rogniaux V, Larre C, Satour P, Leprince O (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140:1418–1436

    Article  PubMed  CAS  Google Scholar 

  11. Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82

    Article  CAS  Google Scholar 

  12. Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  PubMed  CAS  Google Scholar 

  13. Kovacs DS, Kalmar E, Torok Z, Tompa P (2008) Chaperone activityof ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  CAS  Google Scholar 

  14. Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Mishra RN, Sopory SK, Reddy MK (2010) Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Genet Genomics 283:243–254

    Article  PubMed  CAS  Google Scholar 

  15. Reddy PS, Thirulogachandar V, Vaishnavi CS, Aakrati A, Sopory SK, Reddy MK (2011) Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene 474:29–38

    Article  PubMed  CAS  Google Scholar 

  16. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  17. Wang XJ, Loh CS, Yeoh HH, Sun WQ (2003) Differential mechanisms to induce dehydration tolerance by abscisic acid and sucrose in Spathoglottis plicata (Orchidaceae) protocorms. Plant Cell Environ 26:737–744

    Article  CAS  Google Scholar 

  18. Shimizu T, Kanamori Y, Furuki T, Kikawada T, Okuda T, Takahashi T, Mihara H, Sakurai M (2010) Desiccation-induced structuralization and glass formation of group 3 late embryogenesis abundant protein model peptides. Biochemistry 49:1093–1104

    Article  PubMed  CAS  Google Scholar 

  19. Boucher V, Buitink J, Lin XD, Boude J, Hoekstra FA, Hundertmark M, Renard D, Leprince O (2010) MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation aggregated proteins. Plant Cell Environ 33:418–430

    Article  PubMed  CAS  Google Scholar 

  20. Olvera-Carrillo Y, Campos F, Reyes JL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the Group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol 154:373–390

    Article  PubMed  CAS  Google Scholar 

  21. Gu H, Jia Y, Wang X, Chen Q, Shi S, Ma L, Zhang J, Zhang H, Ma H (2011) Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.). Mol Biol Rep. doi:10.1007/s11033-011-1130-6

    Google Scholar 

  22. Bravo LA, Gallardo J, Navarrete A, Olave N, Martinez J, Alberdi M, Close TJ, Corcuera LJ (2003) Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol Plant 1128:262–269

    Article  Google Scholar 

  23. Sa′nchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957

    Article  Google Scholar 

  24. Tompa P, Banki P, Bokor M, Kamasa P, Kovacs D, Lasanda G, Tompa K (2006) Protein-water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophys J 91:2243–2249

    Article  PubMed  CAS  Google Scholar 

  25. Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  26. Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed  CAS  Google Scholar 

  27. AbuAbied M, Golomb L, Belausov E, Huang S, Geiger B, Kam Z, Staiger CJ, Sadot E (2006) Identification of plant cytoskeleton-interacting proteins by screening for actin stress fiber association in mammalian fibroblasts. Plant J 48:367–379

    Article  CAS  Google Scholar 

  28. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  PubMed  CAS  Google Scholar 

  29. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  30. Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK, Reddy MK (2007) Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Mol Biol 64:713–732

    Article  PubMed  CAS  Google Scholar 

  31. Reddy PS, Nair S, Mallikarjuna G, Kaul T, Markandeya G, Sopory SK, Reddy MK (2008) A high-throughput, low-cost method for the preparation of “sequencing-ready” phage DNA template. Anal Biochem 376:258–261

    Article  PubMed  CAS  Google Scholar 

  32. Reddy PS, Mahanty S, Kaul T, Nair S, Sopory SK, Reddy MK (2008) A high-throughput genome-walking method and its use for cloning unknown flanking sequences. Anal Biochem 381:248–253

    Article  PubMed  CAS  Google Scholar 

  33. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  34. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Vande Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  35. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  36. Jones DT (2002) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  Google Scholar 

  37. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  Google Scholar 

  38. Joshi JP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Article  PubMed  CAS  Google Scholar 

  39. Joshi JP (1987) Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic Acids Res 15:9627–9640

    Article  PubMed  CAS  Google Scholar 

  40. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-salt and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  41. Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14:2601–2609

    Article  PubMed  CAS  Google Scholar 

  42. Chaurasia N, Mishra Y, Rai LC (2008) Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia col. Biochem Biophys Res Commun 376:225–230

    Article  PubMed  CAS  Google Scholar 

  43. Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Department of Biotechnology (Ministry of Science and Technology, Government of India) in terms of a research Grant and from internal Grants of ICGEB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malireddy K. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, P.S., Reddy, G.M., Pandey, P. et al. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol Biol Rep 39, 7163–7174 (2012). https://doi.org/10.1007/s11033-012-1548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1548-5

Keywords

Navigation