Skip to main content
Log in

Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Water is an essential element for living organisms, such that various responses have evolved to withstand water deficit in all living species. The study of these responses in plants has had particular relevance given the negative impact of water scarcity on agriculture. Among the molecules highly associated with plant responses to water limitation are the so-called late embryogenesis abundant (LEA) proteins. These proteins are ubiquitous in the plant kingdom and accumulate during the late phase of embryogenesis and in vegetative tissues in response to water deficit. To know about the evolution of these proteins, we have studied the distribution of group 1 LEA proteins, a set that has also been found beyond the plant kingdom, in Bacillus subtilis and Artemia franciscana. Here, we report the presence of group 1 LEA proteins in green algae (Chlorophyita and Streptophyta), suggesting that these group of proteins emerged before plant land colonization. By sequence analysis of public genomic databases, we also show that 34 prokaryote genomes encode group 1 LEA-like proteins; two of them belong to Archaea domain and 32 to bacterial phyla. Most of these microbes live in soil-associated habitats suggesting horizontal transfer from plants to bacteria; however, our phylogenetic analysis points to convergent evolution. Furthermore, we present data showing that bacterial group 1 LEA proteins are able to prevent enzyme inactivation upon freeze–thaw treatments in vitro, suggesting that they have analogous functions to plant LEA proteins. Overall, data in this work indicate that LEA1 proteins’ properties might be relevant to cope with water deficit in different organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Asteri I-A, Boutou E, Anastasiou R, Pot B, Vorgias CE, Tsakalidou E, Papadimitriou K (2011) In silico evidence for the horizontal transfer of gsiB, a σB-regulated gene in gram-positive bacteria to lactic acid bacteria. Appl Environ Microbiol 77:3526–3531

    Article  PubMed  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Bensmihen S, To A, Lambert G, Kroj T, Giraudat J, Parcy F (2004) Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Lett 561:127–131

    Article  PubMed  CAS  Google Scholar 

  • Brandon M, Hall BM, Owns KM, Singh KK (2011) Distinct functions of evolutionary conserved MSF1 and late embryogenesis abundant (LEA)-like domains in mitochondria. J Biol Chem 286:39141–39152

    Article  Google Scholar 

  • Browne J, Tunnacliffe A, Burnell A (2002) Anhydrobiosis: plant desiccation gene found in a nematode. Nature 416:38

    Article  PubMed  CAS  Google Scholar 

  • Campos F, Zamudio F, Covarrubias AA (2006) Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth. Biochem Biophys Res Commun 342:406–413

    Article  PubMed  CAS  Google Scholar 

  • Campos F, Guillen G, Reyes JL, Covarrubias AA (2011) A general method of protein purification for recombinant unstructured non-acidic proteins. Protein Expr Purif 80:47–51

    Article  PubMed  CAS  Google Scholar 

  • Chen WH, Ge X, Wang W, Yu J, Hu S (2009) A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana. BMC Genomics 10:52

    Article  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Del Bem LE, Vincentz MGA (2010) Evolution of xyloglucan-related genes in green plants. BMC Evol Biol 10:341

    Article  PubMed  Google Scholar 

  • Delseny M, Bies-Etheve N, Carles C, Hull G, Vicient C, Raynal M, Grellet F, Aspart L (2001) Late embryogenesis abundant (LEA) protein gene regulation during Arabidopsis seed maturation. J Plant Physiol 158:419–427

    Article  CAS  Google Scholar 

  • Dunning-Hotopp J et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  PubMed  CAS  Google Scholar 

  • Dure L, Galau GA (1981) Developmental biochemistry of cotton seed embryogenesis and germination. XIII. Regulation of biosynthesis of principal storage proteins. Plant Physiol 68:187–194

    Article  PubMed  CAS  Google Scholar 

  • Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of rice cluster I Archaea-the key methane producers in the rice rhizosphere. Science 313:370–372

    Article  PubMed  CAS  Google Scholar 

  • Espelund M, Saebøe-Larssen S, Hughes DW, Galau GA, Larsen F, Jakobsen KS (1992) Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J 2:241–252

    PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Gaubier P, Raynal M, Hull G, Huestis GM, Grellet F, Arenas C, Pagès M, Delseny M (1993) Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet 238:409–418

    Article  PubMed  CAS  Google Scholar 

  • Gilles GJ, Hines KM, Manfre AJ, Marcotte WR Jr (2007) A predicted N-terminal helical domain of a group 1 LEA protein is required for protection of enzyme activity from drying. Plant Physiol Biochem 45:389–399

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Arancibia-Avila P, Taylor WA, Strother PK, Cook ME (2012) Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. Am J Bot 99:130–144

    Article  PubMed  Google Scholar 

  • Hand SC, Jones D, Menze MA, Witt TL (2007) Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. J Exp Zool 307:62–66

    Article  Google Scholar 

  • Hand SC, Menze MA, Toner M, Boswell L, Moore D (2010) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

    Article  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Terada T, Hamasuna S (1995) Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J 7:913–925

    Article  PubMed  CAS  Google Scholar 

  • Higuchi R (1990) Recombinant PCR. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 177–183

  • Hoekstra FA, Golosina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Hundertmark M, Popova AV, Rausch S, Seckler R, Hincha DK (2012) Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Biochem Biophys Res Commun 417:122–128

    Article  PubMed  CAS  Google Scholar 

  • Huntley S, Hamann N, Wegener-Feldbrügge S, Treuner-Lange A, Kube M, Reinhardt R, Klages S, Müller R, Ronning CM, Nierman WC, Søgaard-Andersen L (2011) Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28:1083–1097

    Article  PubMed  CAS  Google Scholar 

  • Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Kikawada T, Nakahara Y, Kanamori Y, Iwata K-I, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61

    Article  PubMed  CAS  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Ebbole DJ (1998) Analysis of two transcription activation elements in the promoter of the developmentally regulated con-10 gene of Neurospora crassa. Fungal Genet Biol 23:259–268

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332

    Article  PubMed  CAS  Google Scholar 

  • Manfre AJ, Lanni LM, Marcotte WR Jr (2006) The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiol 140:140–149

    Article  PubMed  CAS  Google Scholar 

  • Manfre AJ, LaHatte GA, Climer CR, Marcotte WR Jr (2009) Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1. Plant Cell Physiol 50:243–253

    Article  PubMed  CAS  Google Scholar 

  • Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid responsive sequences from the Em gene of wheat. Plant Cell 1:969–976

    PubMed  CAS  Google Scholar 

  • Maul B, Volker U, Riethdorf S, Engelmann S, Hecker M (1995) Sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol Gen Genet 248:114–120

    Article  PubMed  CAS  Google Scholar 

  • Olvera-Carrillo Y, Campos F, Reyes JL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis thaliana. Plant Physiol 154:373–390

    Article  PubMed  CAS  Google Scholar 

  • Olvera-Carrillo Y, Reyes JL, Covarrubias AA (2011) Late embryogenesis abundant proteins, versatile players in the plant adaptation to water limiting environments. Plant Signal Behav 6:586–589

    Article  PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    PubMed  CAS  Google Scholar 

  • Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40:79–82

    Article  Google Scholar 

  • Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718

    Article  CAS  Google Scholar 

  • Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31:1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Sharon MA, Kozarova A, Clegg JS, Vacratsis PO, Warner AH (2009) Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. Biochem Cell Biol 87:415–430

    Article  PubMed  CAS  Google Scholar 

  • Shih MD, Hoekstra FA, Hsing YC (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:211–255

    Article  CAS  Google Scholar 

  • Shih MD, Huang LT, Wei FJ, Wu MT, Folkert A, Hoekstra FA, Hsing YC (2010) OsLEA1a, a new Em-like protein of cereal plants. Plant Cell Physiol 51:2132–2144

    Article  PubMed  CAS  Google Scholar 

  • Soulages JL, Kim K, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128:822–832

    Article  PubMed  CAS  Google Scholar 

  • Stacy RAP, Aalen RB (1998) Identification of sequence homology between the internal hydrophilic repeated motifs of Group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta 206:476–478

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Tompa P, Bánki P, Bokor M, Kamasa P, Kovács D, Lasanda G, Tompa K (2006) Protein–water and protein–buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophysical J 91:2243–2249

    Article  CAS  Google Scholar 

  • Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 181:315–321

    Article  Google Scholar 

  • Vicient C, Hull G, Guilleminot J, Devic M, Delseny M (2000) Differential expression of the Arabidopsis genes coding for Em-like proteins. J Exp Bot 51:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Warner AH, Miroshnychenko O, Kozarova A, Vacratsis PO, MacRae TH, Kim J, Clegg JS (2010) Evidence for multiple group 1 late embryogenesis abundant proteins in encysted embryos of Artemia and their organelles. J Biochem 148:581–592

    Article  PubMed  CAS  Google Scholar 

  • Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196–206

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yotsui I, Saruhashi M, Kawato T, Taji T, Hayashi T, Quatrano RS, Sakata Y (2013) ABSCISIC ACID INSENSITIVE3 regulates abscisic acid-responsive gene expression with the nuclear factor Y complex through the ACTT-core element in Physcomitrella patens. New Phytol. doi:10.1111/nph.12251

    PubMed  Google Scholar 

  • Zou Y, Hong R, He S, Liu G, Huang Z, Zheng Y (2011) Polyproline II structure is critical for the enzyme protective function of soybean Em (LEA1) conserved domains. Biotechnol Lett 33:1667–1673

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jaqueline Mazari for excellent technical assistance. We acknowledge to Paul Gaytán and Santiago Becerra from Oligonucleotide Synthesis and DNA Sequencing Facilities of the Instituto de Biotecnología-UNAM for providing us with the oligonucleotides and DNA sequences used in this work. This work was partially supported by CONACyT-Mexico to AAC (50485 and 132258). C.C.-V. was supported by a PhD fellowship from CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Campos.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2013_768_MOESM1_ESM.doc

Supplemental material Fig. 1S. Multiple-sequence alignment of plant and non-plant group LEA1 proteins. Multiple-sequence alignment of all the LEA1 sequences used in this work (Table 1 and Table 2) (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, F., Cuevas-Velazquez, C., Fares, M.A. et al. Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Mol Genet Genomics 288, 503–517 (2013). https://doi.org/10.1007/s00438-013-0768-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0768-2

Keywords

Navigation