Skip to main content
Log in

Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The regulation of genes involved in primary lipid metabolism in plants is much less well understood than that in many other pathways in plant biology. In the investigation reported here, we have characterized transcriptional regulatory mechanisms controlling seed-specific FAD2 expression in sesame (Sesamum indicum). FAD2 codes for extra-plastidial FAD2 desaturase, which catalyzes the conversion of oleic acid to linoleic acid. Promoter analysis of the sesame FAD2 gene (SeFAD2) using the β-glucuronidase (GUS) reporter system demonstrated that the − 660 to − 180 promoter region functions as a negative cis-element in the seed-specific expression of the SeFAD2 gene. Sesame and Arabidopsis FAD2 genes harbor one large intron within their 5′-untranslated region. These introns conferred up to 100-fold enhancement of GUS expression in transgenic Arabidopsis tissues as compared with intron-less controls. Prerequisite cis-elements for the SeFAD2 intron-mediated enhancement of gene expression and the promoter-like activity of SeFAD2 intron were identified. SeFAD2 transcripts were induced by abscisic acid (ABA) in developing sesame seeds, and the − 660 to − 548 and − 179 to − 53 regions in the SeFAD2 promoter were implicated in ABA-responsive signaling. Theses observations indicate that an intron-mediated regulatory mechanism is involved in controlling not only the seed-specific expression of the SeFAD2 gene but also the expression of plant FAD2 genes, which are essential for the synthesis of polyunsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  • Bao X, Katz S, Pollard M, Ohlrogge JB (2002) Carboxylic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proc Natl Acad Sci USA 99:7172–7177

    Article  PubMed  CAS  Google Scholar 

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Saslas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis gene involved in acyl lipid metabolism. A 2003 genes of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  PubMed  CAS  Google Scholar 

  • Bolle C, Herrmann RG, Oelmuller R (1996) Intron sequences are involved in the plastid- and light-dependent expression of the spinach PsaD gene. Plant J 10:919–924

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bustos MM, Begum D, Kalkan FA, Battraw MJ, Hall TC (1991) Positive and negative cis-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter. EMBO J 10:1469–1479

    PubMed  CAS  Google Scholar 

  • Cahoon EB, Shanklin J, Ohlrogge JB (1992) Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc Natl Acad Sci USA 89:11184–11188

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekharan MB, Bishop KJ, Hall TC (2003) Module-specific regulation of the β-phaseolin promoter during embryogenesis. Plant J 33:853–866

    Article  PubMed  CAS  Google Scholar 

  • Clancy M, Hannah LC (2002) Splicing of the Maize Sh1 first intron is essential for enhancement of gene expression, a T-rich motif increases expression without affecting splicing. Plant Physiol 130:918–929

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Axelos M, Bardet C, Atanassova R, Chaubet N, Lescure B (1993) Modular organization and developmental activity of an Arabidopsis thaliana EF-1α gene promoter. Mol Genet Genomics 238:428–436

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini-preparation: Version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799–1810

    Article  PubMed  CAS  Google Scholar 

  • Digeon J-F, Guiderdoni E, Alary R, Michaux-ferrière N, Joudrier P, Gautier M (1999) Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Mol Biol 39:1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Ellerstrom M, Stalberg K, Ezcurra I, Rask L (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol 32:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Ezcurra I, Wycliffe P, Nehlin L, Ellerstorm M, Rask L (2000) Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J 24:57–66

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Somerville C (1989) Abscisic acid or high osmoticum promote accumulation of long-chain fatty acids in developing embryos of Brassica napus. Plant Sci 61:213–217

    Article  CAS  Google Scholar 

  • Finkelstein R, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell Suppl 14:S15–S45

    CAS  Google Scholar 

  • Guiltinan MJ, Marcotte WR, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–270

    Article  PubMed  CAS  Google Scholar 

  • Haralampidis K, Milioni D, Sanchez J, Baltrusch M, Heinz E, Hatzopoulos P (1998) Temporal and transient expression of stearoyl-ACP carrier protein desaturase gene during olive fruit development. J Exp Bot 49:1661–1669

    Article  CAS  Google Scholar 

  • Hattori T, Terada T, Hamasuna S (1995) Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J 7:913–925

    Article  PubMed  CAS  Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996) Developmental and growth temperature regulation of two different microsomal ω−6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  PubMed  CAS  Google Scholar 

  • Hill A, Nantel A, Rock CD, Quatrano RS (1996) A conserved domain of the viviparous-1 gene product enhances the DNA binding activity of the bZIP protein EmBP-1 and other transcription factors. J Biol Chem 271:3366–3374

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Foster R, Chua N-H (1993) Plant bZIP protein DNA binding specificity. J Mol Biol 230:1131–1144

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jin UH, Lee JW, Chung YS, Lee JH, Yi YB, Kim YK, Hyung NI, Pyee JH, Chung CH (2001) Characterization and temporal expression of a w-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161:935–941

    Article  CAS  Google Scholar 

  • Kim MJ, Shin JS, Kim JK, Suh MC (2005) Genomic structures and characterization of the 5′-flanking regions of acyl carrier protein and Δ4–palmitoyl-ACP desaturase genes from Coriandrum sativum. Biochim Biophys Acta 1730:235–244

    PubMed  CAS  Google Scholar 

  • Kinney AJ (1994) Genetic modification of the storage lipids of plants. Curr Opin Biotechnol 5:144–151

    Article  CAS  Google Scholar 

  • Kinney AJ (1996) Development of genetically engineered soybeans for food applications. J Food Lipids 3:273–292

    Article  CAS  Google Scholar 

  • Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans 30:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Singh S, Green A (2000) Genetic modification of cotton seed oil using inverted-repeat gene-silencing techniques. Biochem Soc Trans 28:927

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Brubaker CL, Green AG, Marshall DR, Sharp PJ, Singh SP (2001) Evolution of the FAD2-1 fatty acid desaturase 5′ UTR intron and the molecular systematics of Gossypium (Malvaceae). Am J Bot 88:92–102

    Article  PubMed  CAS  Google Scholar 

  • Long M, Rosenberg C, Gilbert W (1995) Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci USA 92:12495–12499

    Article  PubMed  CAS  Google Scholar 

  • Luehrsen KR, Walbot V (1994) Intron creation and polyadenylation in maize are directed by AU-rich RNA. Genes Dev 8:1117–1130

    Article  PubMed  CAS  Google Scholar 

  • Maas C, Laufs J, Grant S, Korfhage C, Werr W (1991) The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol Biol 16:199–207

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418:236–243

    Article  PubMed  CAS  Google Scholar 

  • Maruyama I, Rakow TL, Maruyama HI (1995) cRACE: a simple method for identification of the 5′-end of mRNAs. Nucleic Acids Res 23:3796–3797

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Smith MA, Kunst L (2001) A condensing enzyme from the seeds of Lesquerella fendleri that specifically elongates hydroxy fatty acids. Plant Physiol 127:1635–1643

    Article  PubMed  CAS  Google Scholar 

  • Morello L, Bardini M, Sala F, Breviario D (2002) A long leader intron of the Ostub 16 rice β-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J 29:33–44

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nambara E, Keith K, McCourt P, Naito S (1994) Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. Plant Cell Physiol 35:509–513

    PubMed  CAS  Google Scholar 

  • Norris SR, Meyer SE, Callis J (1993) The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol 21:895–906

    Article  PubMed  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    Article  PubMed  CAS  Google Scholar 

  • Ooms JJJ, Leon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (a comparative study using abscisic acid-insensitive abi3 mutants). Plant Physiol 102:1185–1191

    PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delsney M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    Article  PubMed  CAS  Google Scholar 

  • Phillips J, Artsaenko O, Fiedler U, Horstmann C, Mock H-P, Mintz K, Conrad U (1997) Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J 16:4489–4496

    Article  PubMed  CAS  Google Scholar 

  • Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JD, Chapman KD, Pirtle RM (2001) Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). Biochim Biophys Acta 1522:122–129

    PubMed  CAS  Google Scholar 

  • Rose AB (2002) Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8:1444–1453

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Beliakoff JA (2000) Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol 122:535–542

    Article  PubMed  CAS  Google Scholar 

  • Salgueiro S, Pignocchi C, Parry MAJ (2000) Intron-mediated gusA expression in tritordeum and wheat resulting from particle bombardment. Plant Mol Biol 42:615–622

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Ho TH (1997) Promoter switches specific for abscisic acid (ABA)-induced gene expression in cereals. Physiol Plant 101:653–664

    Article  CAS  Google Scholar 

  • Shen Q, Zhang P, Ho TH (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Stalberg K, Ellerstom M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519

    Article  PubMed  CAS  Google Scholar 

  • Verwoert I, Meller-Harel Y, van der Linden K, Verbree B, Koes R, Stuitje A (2000) The molecular basis of the high linoleic acid content in Petunia seed oil: analysis of a seed-specific linoleic acid mutant. Biochem Soc Trans 28:631–632

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA 94:7685–7690

    Article  PubMed  CAS  Google Scholar 

  • Vos E, Cunnane SC (2003) α-Linolenic acid, linoleic acid, coronary artery disease, overall mortality. Am J Clin Nutr 77:521–522

    PubMed  CAS  Google Scholar 

  • Zou J, Abrams GD, Barton DL, Taylor DC, Pomeroy MK, Abrams SR (1995) Induction of lipid and oleosin biosynthesis by (+)-abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L. cv reston (biological responses in the presence of 8[prime]-hydroxyabscisic acid). Plant Physiol 108:563–571

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the BioGreen 21 Program funded by the Rural Development Administration, Republic of Korea, and the Agricultural Plant Stress Research Center (#R11-2001-0920301-0) of the Korea Science and Engineering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Chung Suh.

Additional information

Communicated by H. Ronne

The nucleotide sequence of the microsomal oleic acid desaturase (FAD2) gene from Sesamum indicum reported here has been registered in the GenBankTM/EBI Data Bank under accession number AY770501.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.J., Kim, H., Shin, J.S. et al. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Genet Genomics 276, 351–368 (2006). https://doi.org/10.1007/s00438-006-0148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0148-2

Keywords

Navigation