Skip to main content
Log in

Optical properties of Bi2Fe4O9/Ag3PO4 for rapid degradation of Rhodamine B

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work focuses on the synthesis of Bi2Fe4O9/Ag3PO4 composites with different Bi2Fe4O9 contents to remove the Rhodamine B (RhB) dye pollutant. The obtained composites were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Photoluminescence and UV–Vis spectrophotometry. The 5Bi2Fe4O9/Ag3PO4 catalyst with 5% Bi2Fe4O9 loading exhibited the high photocatalytic performance with degradation efficiency of 97.91% after 12 min under visible light irradiation. Photoluminescence and UV–Vis analysis showed that 5Bi2Fe4O9/Ag3PO4 has the best separation of photogenerated e/h+ pairs and light absorption. The catalyst exhibited a good selectivity toward tartrazine and methylene blue. The cycling experiment revealed that 5Bi2Fe4O9/Ag3PO4 catalyst has a good stability after 4 runs. The results of trapping radical experiments indicated that h+ charge carriers were the main species involved in the RhB photodegradation process which was supported by a Z-scheme electron transfer mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

XRD data are available on demand.

References

  1. Ashkar MA, Joseph R, Babu A et al (2023) One-minute ultrasound-assisted synthesis of nanostructured silver particles extracted from Desmodium gangeticum for enhanced photocatalytic degradation of toxic dyes and antibacterial studies. Chem Phys Lett 831:140850. https://doi.org/10.1016/j.cplett.2023.140850

    Article  CAS  Google Scholar 

  2. Makhtar SNNM, Yusof N, Fajrina N et al (2023) V2O5/Cds as nanocomposite catalyst for Congo red dye photocatalytic degradation under visible light. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.10.152

    Article  Google Scholar 

  3. Pinchujit S, Phuruangrat A, Wannapop S et al (2023) Sonochemical-assisted synthesis of Pt/Bi2MoO6 nanocomposites for efficient photodegradation of rhodamine B. Opt Mater (Amst) 135:113265. https://doi.org/10.1016/j.optmat.2022.113265

    Article  CAS  Google Scholar 

  4. Nur ASM, Sultana M, Mondal A et al (2022) A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. J Water Process Eng 47:102728. https://doi.org/10.1016/j.jwpe.2022.102728

    Article  Google Scholar 

  5. Khan S, Sadiq M, Kim D et al (2022) TiO2 and its binary ZnTiO2 and ternary CdZnTiO2 nanocomposites as efficient photocatalysts for the organic dyes degradation. Appl Water Sci 12:118. https://doi.org/10.1007/s13201-022-01628-0

    Article  CAS  Google Scholar 

  6. Sultana M, Mondal A, Islam S et al (2023) Strategic development of metal doped TiO2 photocatalysts for enhanced dye degradation activity under UV–vis irradiation: a review. Curr Res Green Sustain Chem 7:100383. https://doi.org/10.1016/j.crgsc.2023.100383

    Article  CAS  Google Scholar 

  7. Derkaoui K, Hadjersi T, Boukhouidem K et al (2023) Facile CeO2 nanoparticles deposition on Si-nanowires: application to the rhodamine B photodegradation under visible light. Reac Kinet Mech Cat 136:1657–1672. https://doi.org/10.1007/s11144-023-02427-7

    Article  CAS  Google Scholar 

  8. Ling C, Yimin D, Qi L et al (2022) Novel High-efficiency adsorbent consisting of magnetic cellulose-based ionic liquid for removal of anionic dyes. J Mol Liq 353:118723. https://doi.org/10.1016/j.molliq.2022.118723

    Article  CAS  Google Scholar 

  9. Ighnih H, Haounati R, Malekshah RE et al (2023) Photocatalytic degradation of RhB dye using hybrid nanocomposite BiOCl@Kaol under sunlight irradiation. J Water Process Eng 54:103925. https://doi.org/10.1016/j.jwpe.2023.103925

    Article  Google Scholar 

  10. Nnaji PC, Anadebe VC, Ezemagu IG, Onukwuli O (2022) Potential of Luffa cylindrica seed as coagulation-flocculation (CF) agent for the treatment of dye wastewater: kinetic, mass transfer, optimization and CF adsorption studies. Arab J Chem 15:103629. https://doi.org/10.1016/j.arabjc.2021.103629

    Article  CAS  Google Scholar 

  11. Raj S, Singh H, Bhattacharya J (2023) Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: process studies in an industrial ecology concept. Sci Total Environ 857:159464. https://doi.org/10.1016/j.scitotenv.2022.159464

    Article  CAS  PubMed  Google Scholar 

  12. Khen A, Hadjersi T, Brihi N et al (2022) Preparation of SiNWs/rGO/CuO nanocomposites as effective photocatalyst for degradation of ciprofloxacin assisted with peroxymonosulfate. J Inorg Organomet Polym Mater 32:1078–1091. https://doi.org/10.1007/s10904-021-02184-x

    Article  CAS  Google Scholar 

  13. Naraginti S, Sathishkumar K, Zhang F, Liu X (2023) Fabrication of novel BiPO4/Ag3PO4@rGO hybrid composite for effective detoxification of tetracycline. Environ Res 223:115407. https://doi.org/10.1016/j.envres.2023.115407

    Article  CAS  PubMed  Google Scholar 

  14. Nagajyothi PC, Pavani K, Ramaraghavulu R, Shim J (2024) Surfactant-assisted hydrothermal synthesis and photocatalytic activity of Ag3PO4. Mater Lett 355:135440. https://doi.org/10.1016/j.matlet.2023.135440

    Article  CAS  Google Scholar 

  15. Huang H, Tao X, Niu Z et al (2022) Construction of magnetically recoverable MnZnFe2O4@Ag3PO4 Z-scheme photocatalyst for rapid visible-light-driven phenol degradation. Environ Sci Pollut Res 30:32095–32107. https://doi.org/10.1007/s11356-022-24479-3

    Article  CAS  Google Scholar 

  16. Bose BA, Saha A, Kalarikkal N (2023) Ag3PO4-coconut shell derived carbon composite for visible light driven photocatalysis. J Phys Chem Solids 173:111102. https://doi.org/10.1016/j.jpcs.2022.111102

    Article  CAS  Google Scholar 

  17. da Trindade LG, Assis M, Souza JC et al (2024) Improving the photocatalytic dye degradation performance and bactericidal properties of Brazilian Amazon Kaolin-waste by adding ZnO and Ag3PO4. J Alloys Compd 971:172556. https://doi.org/10.1016/j.jallcom.2023.172556

    Article  CAS  Google Scholar 

  18. Kokilavani S, Alaraidh IA, Okla MK et al (2022) Efficient photocatalytic degradation of methyl orange and malachite green by Ag3PO4 decorated BiOBr nanoflower under visible light: performance evaluation, mechanism insights and toxicology of the by-products. J Alloys Compd 909:164703. https://doi.org/10.1016/j.jallcom.2022.164703

    Article  CAS  Google Scholar 

  19. Ding N, Fei Q, Xiao D et al (2023) Highly efficient and recyclable Z-scheme heterojunction of Ag3PO4/g-C3N4 floating foam for photocatalytic inactivation of harmful algae under visible light. Chemosphere 317:137773. https://doi.org/10.1016/j.chemosphere.2023.137773

    Article  CAS  PubMed  Google Scholar 

  20. Ye H, Xia L, Wang Y et al (2023) Magnetic Ag3PO4/CoFe2O4 Z-scheme heterojunction material for photocatalytic decomposition of ofloxacin. J Mater Sci Mater Electron 34:2090. https://doi.org/10.1007/s10854-023-11567-4

    Article  CAS  Google Scholar 

  21. Zhang H, Tong T, Chen J, Cheng J (2016) Synthesis and visible light photocatalytic properties of Bi2Fe4O9 particles via EDTA-assisted sol–gel route. J Sol-Gel Sci Technol 78:135–143. https://doi.org/10.1007/s10971-015-3931-x

    Article  CAS  Google Scholar 

  22. Shekardasht MB, Givianrad MH, Gharbani P et al (2020) Preparation of a novel Z-scheme g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of Congo Red dye under visible light. Diam Relat Mater 109:108008. https://doi.org/10.1016/j.diamond.2020.108008

    Article  CAS  Google Scholar 

  23. Yang H, Dai J, Wang L et al (2017) A novel approach to prepare Bi2Fe4O9 flower-like spheres with enhanced photocatalytic performance. Sci Rep 7:768. https://doi.org/10.1038/s41598-017-00831-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang H, Bian H, Zhang H et al (2020) Magnetic separable Bi2Fe4O9/Bi2MoO6 heterojunctions in Z-scheme with enhanced visible-light photocatalytic activity for organic pollutant degradation. Catal Lett 150:2464–2473. https://doi.org/10.1007/s10562-020-03157-4

    Article  CAS  Google Scholar 

  25. Das K, Bariki R, Pradhan SK et al (2022) Boosting the photocatalytic performance of Bi2Fe4O9 through formation of Z-scheme heterostructure with In2S3: applications towards water decontamination. Chemosphere 306:135600. https://doi.org/10.1016/j.chemosphere.2022.135600

    Article  CAS  PubMed  Google Scholar 

  26. Motora KG, Wu C-M, Lin S-T (2023) Novel Ag3PO4@ZIF-8 p-n heterojunction for effective photodegradation of organic pollutants. J Water Process Eng 52:103586. https://doi.org/10.1016/j.jwpe.2023.103586

    Article  Google Scholar 

  27. Ning X, Peng Q, Zeng B et al (2024) Ag3PO4/g-C3N4/Zn3(PO4)2 catalyst with ternary heterostructure and Z-scheme/type II dual pathway mechanism for high photocatalytic performance. J Alloys Compd 976:173070. https://doi.org/10.1016/j.jallcom.2023.173070

    Article  CAS  Google Scholar 

  28. Li B, Lai C, Zeng G et al (2018) Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS Appl Mater Interfaces 10:18824–18836. https://doi.org/10.1021/acsami.8b06128

    Article  CAS  PubMed  Google Scholar 

  29. Rafiq U, Majid K (2020) Mitigating the charge recombination by the targeted synthesis of Ag2WO4/Bi2Fe4O9 composite: the facile union of orthorhombic semiconductors towards efficient photocatalysis. J Alloys Compd 842:155876. https://doi.org/10.1016/j.jallcom.2020.155876

    Article  CAS  Google Scholar 

  30. Ma M, Wu S, Liu J et al (2021) Preparation and characterization of Bi2Fe4O9/Ag3PO4 composite photocatalyst for degradation of EE2. ChemistrySelect 6:12590–12603. https://doi.org/10.1002/slct.202103137

    Article  CAS  Google Scholar 

  31. Razavi M, Barras A, Ifires M et al (2022) Colorimetric assay for the detection of dopamine using bismuth ferrite oxide (Bi2Fe4O9) nanoparticles as an efficient peroxidase-mimic nanozyme. J Colloid Interface Sci 613:384–395. https://doi.org/10.1016/j.jcis.2022.01.041

    Article  CAS  PubMed  Google Scholar 

  32. Gao J, Liao X, Ma X, Hou X (2024) Facile fabrication of 2D–2D g-C3N4/Sb heterojunction with enhanced photocatalytic degradation activity of methylene blue. Reac Kinet Mech Cat 137:453–466. https://doi.org/10.1007/s11144-023-02535-4

    Article  CAS  Google Scholar 

  33. Li D, Liu Y, Yang Y et al (2022) Rational construction of Ag3PO4/WO3 step-scheme heterojunction for enhanced solar-driven photocatalytic performance of O2 evolution and pollutant degradation. J Colloid Interface Sci 608:2549–2559. https://doi.org/10.1016/j.jcis.2021.10.178

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Li Y, Wu H et al (2022) A novel BiOCl (110)/rGO/Ag3PO4 (111) heterostructure for efficient detoxification of 2,4-dichlorophenol. Chemosphere 309:136616. https://doi.org/10.1016/j.chemosphere.2022.136616

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Zhou C, Long H et al (2023) Efficient oxidation of ibuprofen by nano-plate Bi2Fe4O9 activated peroxymonosulfate. Sep Purif Technol 319:124044. https://doi.org/10.1016/j.seppur.2023.124044

    Article  CAS  Google Scholar 

  36. Di L, Yang H, Xian T, Chen X (2018) Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation. Nanoscale Res Lett 13:257. https://doi.org/10.1186/s11671-018-2671-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miao X, Yue X, Ji Z et al (2018) Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight. Appl Catal B 227:459–469. https://doi.org/10.1016/j.apcatb.2018.01.057

    Article  CAS  Google Scholar 

  38. Hua H, Feng F, Du M et al (2021) 0D–2D Z-scheme photocatalyst Cd0.5Zn0.5S@Bi2Fe4O9 for effective hydrogen evolution from water. Appl Surf Sci 541:148428. https://doi.org/10.1016/j.apsusc.2020.148428

    Article  CAS  Google Scholar 

  39. Wu T, Liu L, Pi M et al (2016) Enhanced magnetic and photocatalytic properties of Bi2Fe4O9 semiconductor with large exposed (001) surface. Appl Surf Sci 377:253–261. https://doi.org/10.1016/j.apsusc.2016.03.140

    Article  CAS  Google Scholar 

  40. Belabed C, Tab A, Moulai F et al (2021) ZnO nanorods-PANI heterojunction dielectric, electrochemical properties, and photodegradation study of organic pollutant under solar light. Elsevier, Berlin

    Book  Google Scholar 

  41. Wu L, Du T, Pang Y et al (2023) Facile construction of heterogeneous Ag3PO4/AgCl photocatalyst for effective removal of norfloxacin: degradation pathways and mechanism. J Mater Sci 34:1422. https://doi.org/10.1007/s10854-023-10778-z

    Article  CAS  Google Scholar 

  42. Dib K, Trari M, Bessekhouad Y (2020) (S, C) co-doped ZnO properties and enhanced photocatalytic activity. Appl Surf Sci 505:144541. https://doi.org/10.1016/j.apsusc.2019.144541

    Article  CAS  Google Scholar 

  43. Jena BJ, Alagarasan D, Kumar J, Naik R (2023) Phase change, tuning of optical and dielectric parameters in Bi/S-Se-Sb heterostructure film upon thermal annealing: an experimental and computational approach. J Alloys Compd 968:171873. https://doi.org/10.1016/J.JALLCOM.2023.171873

    Article  CAS  Google Scholar 

  44. Kaci MM, Nasrallah N, Djaballah AM et al (2022) Insights into the optical and electrochemical features of CuAl2O4 nanoparticles and it use for methyl violet oxidation under sunlight exposure. Opt Mater (Amst) 126:112198. https://doi.org/10.1016/j.optmat.2022.112198

    Article  CAS  Google Scholar 

  45. Islam MR, Azam MG (2021) Enhanced photocatalytic activity of Mg-doped ZnO thin films prepared by sol–gel method. Surf Eng 37:775–783. https://doi.org/10.1080/02670844.2020.1801143

    Article  CAS  Google Scholar 

  46. Kandi D, Martha S, Thirumurugan A, Parida KM (2017) CdS QDs-decorated self-doped γ-Bi2MoO6: a sustainable and versatile photocatalyst toward photoreduction of Cr(VI) and degradation of phenol. ACS Omega 2:9040–9056. https://doi.org/10.1021/acsomega.7b01250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang P-Q, Chen T, Yu B et al (2016) Tollen’s-assisted preparation of Ag3PO4/GO photocatalyst with enhanced photocatalytic activity and stability. J Taiwan Inst Chem Eng 62:267–274. https://doi.org/10.1016/j.jtice.2016.02.016

    Article  CAS  Google Scholar 

  48. Liang Q, Shi Y, Ma W et al (2012) Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Phys Chem Chem Phys 14:15657. https://doi.org/10.1039/c2cp42465g

    Article  CAS  PubMed  Google Scholar 

  49. Mohapatra SR, Sahu B, Badapanda T et al (2016) Optical, dielectric relaxation and conduction study of Bi2Fe4O9 ceramic. J Mater Sci 27:3645–3652. https://doi.org/10.1007/s10854-015-4203-9

    Article  CAS  Google Scholar 

  50. Li Z, Dai J, Cheng C et al (2021) Tailoring photocatalytic activity and magnetic properties of BiFeO3/CeO2/Bi2Fe4O9 composites. J Phys Chem Solids 156:110171. https://doi.org/10.1016/j.jpcs.2021.110171

    Article  CAS  Google Scholar 

  51. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  52. Xu Z, Zhong J, Li M, Yang H (2022) In-situ fabrication and photocatalytic activity of AgBr/Ag3PO4 heterojunctions. Mater Lett 323:132544. https://doi.org/10.1016/j.matlet.2022.132544

    Article  CAS  Google Scholar 

  53. Wang S, Wang Y, Wan J et al (2020) Dual channel carrier transfer based on Ti3C2Tx improves carrier utilization of Z-scheme Ag3PO4/AgBr heterojunction photocatalyst. Sep Purif Technol 253:117486. https://doi.org/10.1016/j.seppur.2020.117486

    Article  CAS  Google Scholar 

  54. Liu D, Zhu P, Yin L et al (2021) Facile fabrication of Bi2GeO5/Ag@Ag3PO4 for efficient photocatalytic RhB degradation. J Solid State Chem 301:122309. https://doi.org/10.1016/j.jssc.2021.122309

    Article  CAS  Google Scholar 

  55. Zhou J, Fan G, Ruan F et al (2022) Construction of Bi2Sn2O7/Ag/Ag3PO4 heterojunction and its photocatalytic degradation properties. J Taiwan Inst Chem Eng 138:104443. https://doi.org/10.1016/j.jtice.2022.104443

    Article  CAS  Google Scholar 

  56. Duan M, Wu D, Wu J, Tong H (2022) Synthesis of ZnWO4/Ag3PO4: p–n heterojunction photocatalyst with enhanced visible-light degradation performance of RhB. J Mater Sci 33:7543–7558. https://doi.org/10.1007/s10854-022-07898-3

    Article  CAS  Google Scholar 

  57. Qian Y, Shi J, Yang X et al (2022) Integration of biochar into Ag3PO4/α-Fe2O3 heterojunction for enhanced reactive oxygen species generation towards organic pollutants removal. Environ Pollut 303:119131. https://doi.org/10.1016/j.envpol.2022.119131

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Chen J, Li N et al (2023) Ag3PO4-anchored La2Ti2O7 nanorod as a Z-scheme heterostructure composite with boosted photogenerated carrier separation and enhanced photocatalytic performance under natural sunlight. Environ Pollut 323:121322. https://doi.org/10.1016/j.envpol.2023.121322

    Article  CAS  PubMed  Google Scholar 

  59. Cai W, Fu J, Hu C, Zhao Y (2024) Crystal-phase engineering of BiVO4 induced by N-doped carbon quantum dots for photocatalytic application. J Mater Sci 59:4118–4135. https://doi.org/10.1007/s10853-024-09480-0

    Article  CAS  Google Scholar 

  60. Zhao Y, Song Y, Sun S et al (2024) Fabrication of multi-component heterojunction Ag/AgCl/g-C3N4/Sn-In3O2 for enhanced degradation of RhB under visible light. J Water Process Eng 59:105021. https://doi.org/10.1016/j.jwpe.2024.105021

    Article  Google Scholar 

  61. Guettaia D, Zazoua H, Ramdani MR et al (2023) Removal of ibuprofen using a SiO2@xTiO2 photocatalyst under UV irradiation. Reac Kinet Mech Cat 136:1085–1106. https://doi.org/10.1007/s11144-023-02398-9

    Article  CAS  Google Scholar 

  62. Pahi S, Mahapatra B, Behera A et al (2023) Fermi level induced band edge alignment and band bending in Ag3PO4/Cu2O p-n heterojunction for proficient photocatalytic applications. Mater Chem Phys 305:127992. https://doi.org/10.1016/j.matchemphys.2023.127992

    Article  CAS  Google Scholar 

  63. Zhao D, Chen Y, Li A et al (2021) Ag@AgBr/graphene oxide/Ni composite film: a highly efficient and stable visible-light-induced plasma photocatalyst and catalytic mechanism. Mater Chem Phys 263:124411. https://doi.org/10.1016/j.matchemphys.2021.124411

    Article  CAS  Google Scholar 

  64. Zhao D, Li A, Wu M, Du M (2018) Ag3PO4/carbon nanotubes/Ni film electrodes: photoelectrocatalytic properties and mechanism of rhodamine B degradation under an applied negative bias. Reac Kinet Mech Cat 124:347–362. https://doi.org/10.1007/s11144-017-1310-z

    Article  CAS  Google Scholar 

  65. Wu C-H, Chien Y-YC (2022) Synthesis of Ag3PO4/Bi2MoO6 heterojunction with enhanced visible-light-driven photocatalytic activity via the hydrothermal method. Reac Kinet Mech Cat 135:3317–3329. https://doi.org/10.1007/s11144-022-02311-w

    Article  CAS  Google Scholar 

  66. Zheng X, Chen W, Xu M et al (2023) Photocatalytic properties of BiOBr/BiOCl/AgBr ternary photocatalysts for degradation of RhB dye. J Nanoparticle Res 25:96. https://doi.org/10.1007/s11051-023-05748-9

    Article  CAS  Google Scholar 

  67. Zhang Q, Zhang W, Liang B et al (2022) ZrO2/C3N4 nanocomposites: green solid-state grinding synthesis, characterization, and photocatalytic degradation of MB dye. J Inorg Organomet Polym Mater 32:4434–4440. https://doi.org/10.1007/s10904-022-02502-x

    Article  CAS  Google Scholar 

  68. Dung Nguyen M, Binh Nguyen T, Hai Tran L et al (2023) Z-scheme S, B co-doped g-C3N4 nanotube@MnO2 heterojunction with visible-light-responsive for enhanced photodegradation of diclofenac by peroxymonosulfate activation. Chem Eng J 452:139249. https://doi.org/10.1016/j.cej.2022.139249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from General Direction of Scientific Research and of Technological Development of Algeria (DGRSDT/MESRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Khen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2444 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khen, A., Hadjersi, T., Brihi, N. et al. Optical properties of Bi2Fe4O9/Ag3PO4 for rapid degradation of Rhodamine B. Reac Kinet Mech Cat 137, 1805–1822 (2024). https://doi.org/10.1007/s11144-024-02626-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-024-02626-w

Keywords

Navigation