Skip to main content
Log in

Fabrication of Highly Efficient Bi2Sn2O7/C3N4 Composite with Enhanced Photocatalytic Activity for Degradation of Organic Pollutants

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Highly efficient Bi2Sn2O7/g-C3N4 composite is reported in present work for enhancing the degradation of Rhodamine B (RhB) in the water. The Bi2Sn2O7/g-C3N4 composite was prepared by direct milling the mixture of pre-synthesized Bi2Sn2O7, as a complexing agent, and Graphitic carbon nitride (g-C3N4). The synthesized composites were characterized by the state of art analytical tools such as XRD, TEM, DRS and FTIR spectroscopy. The surface area of C2 composite (42.8 m2/g) was measure from the nitrogen adsorption/desorption data using Brunauer–Emmett–Teller (BET). Bi2Sn2O7/g-C3N4 was found an excellent photocatalyst for the degradation of RhB (91%) in 6 h. The performance enhancement of the photoactivity is because of improved electron-hole separation efficiency due to active electron transfer between Bi2Sn2O7 and g-C3N4 of the Bi2Sn2O7/g-C3N4 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Meng, Z. Zhang, Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J. Mol. Catal. Chem. 423(2016), 533–549 (2016)

    Article  CAS  Google Scholar 

  2. S. Park, H. Song, H. Choi, J. Moon, NO decomposition over the electrochemical cell of lanthanum stannate pyrochlore and YSZ composite electrode. Solid State Ionics 1759(1), 625–629 (2004). https://doi.org/10.1016/j.ssi.2004.01.078

    Article  CAS  Google Scholar 

  3. N. Phua, P. Vua, D. Dungb, D. Bich, L. Oanha, L. Hoanga, N. Hunga, P. Haia, Temperature-dependent preparation of bismuth pyrostannate Bi2Sn2O7 and its photocatalytic characterization. Mater. Chem. Phys. 221, 197–202 (2019)

    Article  Google Scholar 

  4. W. James, L. Julia, R. Ivana, T. Harold, J. Branton, S. John, An exhaustive symmetry approach to structure determination: phase transitions in Bi2Sn2O7. J. Am. Chem. Soc. 138, 8031–8042 (2016). https://doi.org/10.1021/jacs.6b04947

    Article  CAS  Google Scholar 

  5. S. Zhang, P. Gu, R. Ma et al., Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal. Today 335, 65–77 (2019). https://doi.org/10.1016/j.cattod.2018.09.013

    Article  CAS  Google Scholar 

  6. F. Sayed, V. Grover, B. Mandal, A. Tyagi, Influence of La3+ substitution on electrical and photocatalytic behavior of complex Bi2Sn2O7 oxides. J. Phys. Chem. C 117(21), 10929–10938 (2013). https://doi.org/10.1021/jp400248j

    Article  CAS  Google Scholar 

  7. I. Radosavljevic Evan, J. Howard, α-Bi2Sn2O7—a 176 atom crystal structure from powder diffraction data. Mater. Chem. 13(9), 2098–2113 (2003). https://doi.org/10.1039/b305211g

    Article  CAS  Google Scholar 

  8. A. Salamat, A. Hector, P. McMillan, C. Ritter, Structure, bonding, and phase relations in Bi2Sn2O7 and Bi2Ti2O7 pyrochlores: new insights from high pressure and high temperature studies. Inorg. Chem. 50(23), 11905–11913 (2011). https://doi.org/10.1021/ic200841v

    Article  CAS  PubMed  Google Scholar 

  9. M. Mohamed, S. Ahmed, Pd-doped β-Bi2O3/Bi2Sn2O7 hybrid nanocomposites for photocatalytic fluorene oxidation: a green approach for the synthesis of fluorenone/fluorenol mixture. Microporous Mesoporous Mater. 204(1), 62–72 (2015). https://doi.org/10.1016/j.micromeso.2014.11.004

    Article  CAS  Google Scholar 

  10. J. Yang, J. Dai, J. Li, Synthesis characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity. Appl. Surf. Sci. 257(21), 8965–8973 (2011). https://doi.org/10.1016/j.apsusc.2011.05.074

    Article  CAS  Google Scholar 

  11. P. Ma, Y. Yu, J. Xie, Z. Fu, Ag3PO4/CuO composites utilizing the synergistic effect of photocatalysis and Fenton-like catalysis to dispose organic pollutants. Adv. Powder Technol. 28, 2797–2804 (2017)

    Article  CAS  Google Scholar 

  12. Y. Ma, Y. Bian, P. Tan, Y. Shang, Y. Liu, L. Wu, A. Zhu, W. Liu, X. Xiong, J. Pan, Simple and facile ultrasound-assisted fabrication of Bi2O2CO3/g-C3N4 composites with excellent photoactivity. J. Colloid Interface Sci. 497, 144–154 (2017)

    Article  CAS  Google Scholar 

  13. B. Machado, P. Serp, Graphene-based materials for catalysis. Catal. Sci. Technol. 2(1), 54–75 (2012)

    Article  CAS  Google Scholar 

  14. X. An, J. Yu, Graphene-based photocatalytic composites. RSC Adv. 1(8), 1426–1434 (2011)

    Article  CAS  Google Scholar 

  15. G. Mamba, A. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B 198, 347–377 (2016)

    Article  CAS  Google Scholar 

  16. L. Wang, C. Wang, X. Hu, H. Xue, H. Pang, Metal/graphitic carbon nitride composites: synthesis, structures, and applications. Chemistry 11, 3305–3328 (2016)

    CAS  Google Scholar 

  17. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41(2), 782–796 (2012). https://doi.org/10.1039/C1CS15172J

    Article  CAS  PubMed  Google Scholar 

  18. D. Hong, X. Xia, Y. Wang, R. Xu, Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 22(30), 15006–15012 (2012). https://doi.org/10.1039/C2JM32053C

    Article  CAS  Google Scholar 

  19. J. Zhuang, C. Hu, B. Zhu, Y. Zhong, H. Zhou, Synthesis and photocatalytic properties of Co- and Cu-doped. IOP Conf. Ser. 52, 012081 (2017). https://doi.org/10.1088/1755-1315/52/1/012081

    Article  Google Scholar 

  20. F. Fina, S. Callear, G. Carins, J. Irvine, Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 27, 2612–2618 (2015)

    Article  CAS  Google Scholar 

  21. Y. Cui, Z. Ding, X. Fu, X. Wang, Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. Angew. Chem. Int. Ed. 51(47), 11814–11818 (2012). https://doi.org/10.1002/anie.201206534

    Article  CAS  Google Scholar 

  22. H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity. Appl. Catal. B 160(9), 89–97 (2014)

    Article  Google Scholar 

  23. J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A 1(9), 3083–3090 (2013)

    Article  CAS  Google Scholar 

  24. C. Chang, L. Zhu, S. Wang, X. Chu, L. Yue, Interfaces, novel mesoporous graphite carbon nitride/BiOI heterojunction for enhancing photocatalytic performance under visible-light irradiation. ACS Appl. Mater. 6(7), 5083–5093 (2014). https://doi.org/10.1021/am5002597

    Article  CAS  Google Scholar 

  25. J. Yu, S. Wang, B. Cheng, Z. Li, F. Huang, Noble metal-free Ni(OH)2–g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catal. Sci. Technol. 3, 1782–1789 (2013). https://doi.org/10.1039/C3CY20878H

    Article  CAS  Google Scholar 

  26. X. Zhao, J. Yu, H. Cui, T. Wang, Preparation of direct Z-scheme Bi2Sn2O7/g-C3N4 composite with enhanced photocatalytic performance. J. Photochem. Photobiol., A 335, 130–139 (2017)

    Article  CAS  Google Scholar 

  27. S. Shoukat, S. Haq, W. Rehman et al., Fabrication and characterization of zinc titanate heterojunction for adsorption and photocatalytic applications. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01590-x

    Article  Google Scholar 

  28. H. Ji, F. Chang, X. Hua, W. Qin, W. Shen, Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation. Chem. Eng. J. 218(15), 183–192 (2013). https://doi.org/10.1016/j.cej.2012.12.033

    Article  CAS  Google Scholar 

  29. S. Sano, K. Tsutsui, T. Koike, Y. Hirakawa, N. Teramoto, K. Negishi, N. Takeuchi, Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J. Mater. Chem. A 1(21), 6489–6496 (2013). https://doi.org/10.1039/C3TA10472A

    Article  CAS  Google Scholar 

  30. Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115(15), 7355–7363 (2011). https://doi.org/10.1021/jp200953k

    Article  CAS  Google Scholar 

  31. Y. Liu, Y. Yu, W. Zhang, Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition. Electrochim. Acta 59(1), 121–127 (2012). https://doi.org/10.1016/j.electacta.2011.10.051

    Article  CAS  Google Scholar 

  32. X. Hou, W. Shen, X. Huang, Z. Ai, L. Zhang, Ascorbic acid enhanced activation of oxygen by ferrous iron: a case of aerobic degradation of rhodamine B. J. Hazard. Mater. 308, 67–74 (2018)

    Article  Google Scholar 

  33. L. Luan, P. Huang, Photophysical and photocatalytic properties of BiSnSbO6 under visible light irradiation. Materials 11, 491–517 (2018)

    Article  Google Scholar 

  34. M. Ismaela, E. Elhaddad, D. Taffaa, M. Warka, Solid state route for synthesis of YFeO3/g-C3N4 composites and its visible light activity for degradation of organic pollutants. Catal. Today 313, 47–54 (2018). https://doi.org/10.1016/j.cattod.2018.02.003

    Article  CAS  Google Scholar 

  35. L. Ge, C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B 108(11), 100–107 (2011). https://doi.org/10.1016/j.apcatb.2011.08.014

    Article  CAS  Google Scholar 

  36. H. Heidari, M. Haghighi, M. Shabani, Ultrasound assisted dispersion of Bi2Sn2O7-C3N4 nanophotocatalyst over various amount of zeolite Y for enhanced solar-light photocatalytic degradation of tetracycline in aqueous solution. Ultrason. Sonochem. 43, 61–72 (2018)

    Article  CAS  Google Scholar 

  37. N. Lu, Y. Lu, F. Liu, K. Zhao, X. Yuan, Y. Zhao, Y. Li, H. Qin, J. Zhu, H3PW12O4/TiO2 catalyst-induced photodegradation of Bisphenol A (BPA): kinetics, toxicity and degradation pathways. Chemosphere 91(9), 1266–1272 (2013). https://doi.org/10.1016/j.chemosphere.2013.02.023

    Article  CAS  PubMed  Google Scholar 

  38. J. Cao, B. Luo, H. Lin, B. Xu, S. Chen, Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. J. Hazard. Mater. 217(107), 107–115 (2012). https://doi.org/10.1016/j.jhazmat.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  39. H. Cheng, B. Huang, Y. Dai, X. Qin, Y. Zhang, One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26(9), 6618–6624 (2010). https://doi.org/10.1021/la903943s

    Article  CAS  PubMed  Google Scholar 

  40. P. Rasheed, S. Haq, M. Waseem et al., Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram. Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab6fa2

    Article  Google Scholar 

  41. T. Naseem, M. Waseem, S.U. Din, S. Haq, Reduced graphene oxide/zinc oxide nanocomposite: from synthesis to its application for wastewater purification and antibacterial activity. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01529-2

    Article  Google Scholar 

  42. N. Bibi, S. Haq, W. Rehman, W. Muhammad, M.U. Rehman, A. Shah, B. Khan, P. Rasheed, Low temperature fabrication of SnO2, ZnO and Zn2SnO4 nanostructures for the degradation of Rhodamine 6G: characterization. Biointerface Res. Appl. Chem. 10, 5895–5900 (2020)

    Article  CAS  Google Scholar 

  43. S. Shoukat, W. Rehman, S. Haq et al., Synthesis and characterization of zinc stannate nanostructures for the adsorption of chromium (VI) ions and photo-degradation of rhodamine 6G. Mater. Res. Express 6, 1–12 (2019). https://doi.org/10.1088/2053-1591/ab473c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wajid Rehman or Cun-Yue Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhaddad, E., Rehman, W., Waseem, M. et al. Fabrication of Highly Efficient Bi2Sn2O7/C3N4 Composite with Enhanced Photocatalytic Activity for Degradation of Organic Pollutants. J Inorg Organomet Polym 31, 172–179 (2021). https://doi.org/10.1007/s10904-020-01726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01726-z

Keywords

Navigation