Skip to main content
Log in

Facile CeO2 nanoparticles deposition on Si-nanowires: application to the rhodamine B photodegradation under visible light

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, cerium dioxide nano-particles (CeO2-NPs) were deposited by chemical electroless deposition process on silicon nanowires (Si-NWs) elaborated by metal-assisted chemical etching. The obtained thin films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), photoluminescence (PL), X-ray photoelectron spectrometry (XPS) and UV–Vis spectrophotometry. The Si-NWs/CeO2-NPs films were successfully applied as photocatalysts for the oxidation of Rhodamine B (Rh B), a recalcitrant dye under visible irradiation. The films showed a higher photocatalytic performance with a quasi-total discoloration within 75 min against only 67% for Si-NWs. The radical trapping tests showed that the electrons (e), OH, O2•− and holes (h+) are the main species involved in the Rh B degradation; a reaction mechanism was suggested and discussed. This work provides a new alternative to develop an efficient photocatalyst to eliminate emerging pollutants from the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang S, Chen Z, Cai Y et al (2023) Application of COFs in capture/conversion of CO2 and elimination of organic/inorganic pollutants. Environ Funct Mater. https://doi.org/10.1016/J.EFMAT.2023.03.001

    Article  Google Scholar 

  2. Chen Z, Li Y, Cai Y et al (2023) Application of covalent organic frameworks and metal–organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. Carbon Res 21(2):1–22. https://doi.org/10.1007/S44246-023-00041-9

    Article  CAS  Google Scholar 

  3. Cai Y, Chen Z, Wang S et al (2023) Carbon-based nanocomposites for the elimination of inorganic and organic pollutants through sorption and catalysis strategies. Sep Purif Technol 308:122862. https://doi.org/10.1016/J.SEPPUR.2022.122862

    Article  CAS  Google Scholar 

  4. Liu X, Li Y, Chen Z et al (2023) Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2023.2168473

    Article  PubMed  Google Scholar 

  5. Sathiyavimal S, Vasantharaj S, Shanmugavel M et al (2020) Facile synthesis and characterization of hydroxyapatite from fish bones: Photocatalytic degradation of industrial dyes (crystal violet and Congo red). Prog Org Coatings 148:105890. https://doi.org/10.1016/j.porgcoat.2020.105890

    Article  CAS  Google Scholar 

  6. Mohd Adnan MA, Muhd Julkapli N, Amir MNI, Maamor A (2019) Effect on different TiO 2 photocatalyst supports on photodecolorization of synthetic dyes: a review. Int J Environ Sci Technol 16:547–566. https://doi.org/10.1007/s13762-018-1857-x

    Article  CAS  Google Scholar 

  7. Li J, Liu X, Zhao G et al (2023) Piezoelectric materials and techniques for environmental pollution remediation. Sci Total Environ 869:161767. https://doi.org/10.1016/J.SCITOTENV.2023.161767

    Article  CAS  PubMed  Google Scholar 

  8. Marimuthu S, Antonisamy AJ, Malayandi S et al (2020) Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobiol B Biol 205:111823. https://doi.org/10.1016/j.jphotobiol.2020.111823

    Article  CAS  Google Scholar 

  9. Rajendrachari S, Taslimi P, Karaoglanli AC et al (2021) Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method. Arab J Chem 14:103180. https://doi.org/10.1016/j.arabjc.2021.103180

    Article  CAS  Google Scholar 

  10. Lu Y, Yu L, Zhang S et al (2023) Dual-functional fluorescent metal-organic framework based beads for visual detection and removal of oxytetracycline in real aqueous solution. Appl Surf Sci 625:157202. https://doi.org/10.1016/J.APSUSC.2023.157202

    Article  CAS  Google Scholar 

  11. Sharma K, Dutta V, Sharma S et al (2019) Journal of industrial and engineering chemistry recent advances in enhanced photocatalytic activity of bismuth oxyhalides for ef fi cient photocatalysis of organic pollutants in water: a review. J Ind Eng Chem 78:1–20. https://doi.org/10.1016/j.jiec.2019.06.022

    Article  CAS  Google Scholar 

  12. Zhu D, Zhou Q (2019) Environmental nanotechnology, monitoring & management action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ Nanotechnol Monit Manag 12:100255. https://doi.org/10.1016/j.enmm.2019.100255

    Article  Google Scholar 

  13. Kusuma KB, Manju M, Ravikumar CR et al (2022) Photocatalytic degradation of methylene Blue and electrochemical sensing of paracetamol using cerium oxide nanoparticles synthesized via sonochemical route. Appl Surf Sci Adv 11:100304. https://doi.org/10.1016/j.apsadv.2022.100304

    Article  Google Scholar 

  14. Lai C, Xu F, Zhang M et al (2021) Journal of Colloid and Interface Science Facile synthesis of CeO 2 / carbonate doped Bi 2 O 2 CO 3 Z-scheme heterojunction for improved visible-light photocatalytic performance : photodegradation of tetracycline and photocatalytic mechanism. J Colloid Interface Sci 588:283–294. https://doi.org/10.1016/j.jcis.2020.12.073

    Article  CAS  PubMed  Google Scholar 

  15. Shen Z, Zhou Y, Guo Y et al (2021) Tuning the concentration of surface/bulk oxygen vacancies in CeO2 nanorods to promote highly efficient photodegradation of organic dyes. Chin Chem Lett 32:2524–2528. https://doi.org/10.1016/J.CCLET.2021.01.044

    Article  CAS  Google Scholar 

  16. Munawar T, Bashir A, Nadeem MS et al (2022) Core-shell CeO2@C60 hybrid serves as a dual-functional catalyst: photocatalyst for organic pollutant degradation and electrocatalyst for oxygen evolution reaction. Ceram Int. https://doi.org/10.1016/J.CERAMINT.2022.11.008

    Article  Google Scholar 

  17. Pei LZ, Liu HD, Lin N, Yu HY (2015) Hydrothermal synthesis of cerium titanate nanorods and its application in visible light photocatalysis. Mater Res Bull 61:40–46. https://doi.org/10.1016/J.MATERRESBULL.2014.09.094

    Article  CAS  Google Scholar 

  18. Pei H, Zhang H, Mo Z et al (2020) Highly efficient photocatalytic degradation of rhodamine B by conical graphene quantum dots/cerium oxide composite. Ceram Int 46:3827–3836. https://doi.org/10.1016/J.CERAMINT.2019.10.106

    Article  CAS  Google Scholar 

  19. Kannan R, Kim AR, Eo SK et al (2017) Facile one-step synthesis of cerium oxide-carbon quantum dots/RGO nanohybrid catalyst and its enhanced photocatalytic activity. Ceram Int 43:3072–3079. https://doi.org/10.1016/J.CERAMINT.2016.11.116

    Article  CAS  Google Scholar 

  20. Kavitha G, VinothKumar J, Devanesan S et al (2022) Ceria nanoparticles anchored on graphitic oxide sheets (CeO2-GOS) as an efficient catalyst for degradation of dyes and textile effluents. Environ Res 209:112750. https://doi.org/10.1016/J.ENVRES.2022.112750

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S, Kumari K, Alharthi FA et al (2020) Investigations of TM (Ni, Co) doping on structural, optical and magnetic properties of CeO2 nanoparticles. Vacuum 181:109717. https://doi.org/10.1016/J.VACUUM.2020.109717

    Article  CAS  Google Scholar 

  22. Sättele MS, Windischbacher A, Greulich K et al (2022) Hexacene on Cu(110) and Ag(110): influence of the substrate on molecular orientation and interfacial charge transfer. J Phys Chem C 126:5036–5045. https://doi.org/10.1021/ACS.JPCC.2C00081/ASSET/IMAGES/LARGE/JP2C00081_0005.JPEG

    Article  Google Scholar 

  23. Pandit B, Sankapal BR (2019) Koinkar PM (2019) Novel chemical route for CeO2/MWCNTs composite towards highly bendable solid-state supercapacitor device. Sci Reports 91(9):1–13. https://doi.org/10.1038/s41598-019-42301-y

    Article  CAS  Google Scholar 

  24. Xiao Y, Tan S, Wang D et al (2020) CeO2/BiOIO3 heterojunction with oxygen vacancies and Ce4+/Ce3+ redox centers synergistically enhanced photocatalytic removal heavy metal. Appl Surf Sci 530:147116. https://doi.org/10.1016/J.APSUSC.2020.147116

    Article  CAS  Google Scholar 

  25. Zhang Q, Guo J, Li H et al (2022) ZIF-8-Induced CeO2/ZnO Nanobelts with curled edges accelerating cycling efficiency of Ce3+/Ce4+ for superior photocatalytic performance. J Electron Mater 51:1940–1945. https://doi.org/10.1007/S11664-022-09473-2/METRICS

    Article  CAS  Google Scholar 

  26. Zhang Q, Zhao X, Duan L et al (2020) Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites. J Photochem Photobiol A Chem 392:112156. https://doi.org/10.1016/J.JPHOTOCHEM.2019.112156

    Article  CAS  Google Scholar 

  27. Hezam A, Namratha K, Drmosh QA et al (2020) CeO2 Nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction. ACS Appl Nano Mater 3:138–148. https://doi.org/10.1021/ACSANM.9B01833/SUPPL_FILE/AN9B01833_SI_001.PDF

    Article  CAS  Google Scholar 

  28. Chen HH, Jiang ZH, Li XD, Lei XF (2019) Effect of cerium nitrate concentration on morphologies, structure and photocatalytic activities of CeO2 nanoparticles synthesized by microwave interface method. Mater Lett 257:126666. https://doi.org/10.1016/J.MATLET.2019.126666

    Article  CAS  Google Scholar 

  29. Shehata N, Meehan K, Hudait M, Jain N (2012) Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element. J Nanoparticle Res 14:1–10. https://doi.org/10.1007/S11051-012-1173-1/METRICS

    Article  Google Scholar 

  30. Lu CP, Li G, Mao J et al (2014) Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett 14:4628–4633. https://doi.org/10.1021/NL501659N/SUPPL_FILE/NL501659N_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  31. Stroyuk O, Raevskaya A, Gaponik N et al (2018) Origin of the broadband photoluminescence of pristine and Cu+/Ag+-doped Ultrasmall CdS and CdSe/CdS quantum dots. J Phys Chem C 122:10267–10277. https://doi.org/10.1021/ACS.JPCC.8B02337/SUPPL_FILE/JP8B02337_SI_001.PDF

    Article  CAS  Google Scholar 

  32. Tiwari S, Rathore G, Patra N et al (2018) Defect mediated changes in structural, optical and photoluminescence properties of Ni substituted CeO2. Japanese J Ind Heal 8:305–306. https://doi.org/10.48550/arxiv.1807.02417

    Article  Google Scholar 

  33. Staub F, Rau U, Kirchartz T (2018) Statistics of the auger recombination of electrons and holes via defect levels in the band gap - application to lead-halide perovskites. ACS Omega 3:8009–8016. https://doi.org/10.1021/ACSOMEGA.8B00962/ASSET/IMAGES/LARGE/AO-2018-009626_0002.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kulkarni SK (2015) Nanotechnology: principles and practices. Nanotechnol Princ Pract. https://doi.org/10.1007/978-3-319-09171-6

    Article  Google Scholar 

  35. Andersson DA, Simak SI, Johansson B et al (2007) Modeling of Ce O2, Ce2 O3, and Ce O2–x in the LDA+U formalism. Phys Rev B - Condens Matter Mater Phys 75:035109. https://doi.org/10.1103/PHYSREVB.75.035109/FIGURES/9/MEDIUM

    Article  Google Scholar 

  36. Henderson MA, Perkins CL, Engelhard MH et al (2003) Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surf Sci 526:1–18. https://doi.org/10.1016/S0039-6028(02)02657-2

    Article  CAS  Google Scholar 

  37. Aškrabić S, Dohčević-Mitrović ZD, Araújo VD et al (2013) F-centre luminescence in nanocrystalline CeO2. J Phys D Appl Phys 46:495306. https://doi.org/10.1088/0022-3727/46/49/495306

    Article  CAS  Google Scholar 

  38. Bozetine H, Wang Q, Barras A et al (2015) Green chemistry approach for the synthesis of ZnO-carbon dots nanocomposites with good photocatalytic properties under visible light Key laboratory for liquid-solid structural evolution and processing of materials. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2015.12.001

    Article  PubMed  Google Scholar 

  39. Krishnan A, Vishwanathan PV, Mohan AC et al (2021) Tuning of photocatalytic performance of CeO2-Fe2O3 composite by Sn-doping for the effective degradation of methlene blue (MB) and methyl orange (MO) dyes. Surf Interfaces 22:100808. https://doi.org/10.1016/J.SURFIN.2020.100808

    Article  CAS  Google Scholar 

  40. Chu Z, Li J, Lan YP et al (2022) KCl–LiCl molten salt synthesis of LaOCl/CeO2-g-C3N4 with excellent photocatalytic-adsorbed removal performance for organic dye pollutant. Ceram Int 48:15439–15450. https://doi.org/10.1016/J.CERAMINT.2022.02.078

    Article  CAS  Google Scholar 

  41. Su F, Li P, Huang J et al (2021) (2021) Photocatalytic degradation of organic dye and tetracycline by ternary Ag2O/AgBr–CeO2 photocatalyst under visible-light irradiation. Sci Rep 111(11):1–13. https://doi.org/10.1038/s41598-020-76997-0

    Article  CAS  Google Scholar 

  42. Wu D, Zhang X, Liu S et al (2022) Fabrication of a Z-scheme CeO2/Bi2O4 heterojunction photocatalyst with superior visible-light responsive photocatalytic performance. J Alloys Compd 909:164671. https://doi.org/10.1016/J.JALLCOM.2022.164671

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the General Direction of Scientific Research and Technological Development, Algeria (DGRSDT/MESRS). The authors thank the staff of The Semiconductor Technology Research Center for Energy (CRTSE), Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Derkaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1551 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkaoui, K., Hadjersi, T., Boukhouidem, K. et al. Facile CeO2 nanoparticles deposition on Si-nanowires: application to the rhodamine B photodegradation under visible light. Reac Kinet Mech Cat 136, 1657–1672 (2023). https://doi.org/10.1007/s11144-023-02427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02427-7

Keywords

Navigation