Skip to main content
Log in

Magnetic Ag3PO4/CoFe2O4 Z-scheme heterojunction material for photocatalytic decomposition of ofloxacin

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A magnetic composite catalyst, Ag3PO4/CoFe2O4, was successfully synthesized using a combination of solvothermal and hydrothermal techniques with CoFe2O4 as the base material. The crystal structure, morphology and properties of the Ag3PO4/CoFe2O4 composite catalyst were characterized by various instrumental analysis methods. The photocatalytic activity of this composite catalyst was evaluated using ofloxacin (OFX) degradation. The study revealed that the Z-type heterojunction structure was formed by loading the body-centered cubic Ag3PO4 onto the surface of spinel cobalt ferrite CoFe2O4, and this structure can accelerate the recombination of invalid electron–hole pairs and facilitate the separation of valid charge carriers. The visible light catalytic activity of Ag3PO4/CoFe2O4 composite catalyst was found to have improved significantly. The degradation effect of Ag3PO4/CoFe2O4 composite catalyst on OFX was significantly better than that of pure Ag3PO4 and CoFe2O4, with 4% Ag3PO4/CoFe2O4 showing the best possible effect. The degradation rate of OFX could reach up to 95.9% under visible light for 2.5 h, and the degradation process followed the first-order kinetic reaction model. The magnetic properties of the Ag3PO4/CoFe2O4 composite catalyst make it easy to enable magnetic separation, recovery, and recycling of the catalyst without secondary contamination after the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All of the material is owned by the authors and/or no permissions are required and it is available.

References

  1. K. He, A.D. Soares, H. Adejumo, M. McDiarmid, K. Squibb, L. Blaney, Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water. J. Pharm. Biomed. Anal. 106, 136–143 (2015). https://doi.org/10.1016/j.jpba.2014.11.020

    Article  CAS  Google Scholar 

  2. M.C. Danner, A. Robertson, V. Behrends, J. Reiss, Antibiotic pollution in surface fresh waters: occurrence and effects. Sci. Total. Environ. 664, 793–804 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.406

    Article  CAS  Google Scholar 

  3. L.L. Ma, L.B. Qin, Y.Y. Tian, L. Qin, Z. Yang, C. Yang, Preparation and visible-light photocatalytic properties of PO43- doped Bi2O2CO3/Bi0. Chin. J. Inorg. Chem. 39(01), 98–108 (2023). https://doi.org/10.11862/CJIC.2022.281

    Article  Google Scholar 

  4. L. Chen, S. Yang, X. Zuo, Y. Huang, T. Cai, D. Ding, Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate. Chem. Eng. J. 354, 856–865 (2018). https://doi.org/10.1016/j.cej.2018.08.098

    Article  CAS  Google Scholar 

  5. R. Kaur, A. Kaur, R. Kaur, S. Singh, M.S. Bhatti, A. Umar, S. Baskoutas, S.K. Kansal, Cu-BTC metal organic framework (MOF) derived Cu-doped TiO2 nanoparticles and their use as visible light active photocatalyst for the decomposition of ofloxacin (OFX) antibiotic and antibacterial activity. Adv. Powder Technol. 32(5), 1350–1361 (2021). https://doi.org/10.1016/j.apt.2021.02.037

    Article  CAS  Google Scholar 

  6. C. Dai, X. Tian, Y. Nie, H.M. Lin, C. Yang, B. Han, Y. Wang, Surface facet of CuFeO2 nanocatalyst: a key Parameter for H2O2 activation in fenton-like reaction and organic pollutant degradation. Environ. Sci. Technol. 52(11), 6518–6525 (2018). https://doi.org/10.1021/acs.est.8b01448

    Article  CAS  Google Scholar 

  7. M. Eshraghi, P. Kameli, Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors. Curr. Appl. Phys. 11(3), 476–481 (2011). https://doi.org/10.1016/j.cap.2010.08.032

    Article  Google Scholar 

  8. A. Ei Arrassi, Z. Liu, M.V. Evers, N. Blanc, G. Bendt, S. Saddeler, D. Tetzlaff, D. Pohl, C. Damm, S. Schulz, K. Tschulik, Intrinsic activity of oxygen evolution catalysts probed at single CoFe2O4 nanoparticles. J. Am. Chem. Soc. 141(23), 9197–9201 (2019). https://doi.org/10.1021/jacs.9b04516

    Article  CAS  Google Scholar 

  9. Sonu, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, V.K. Gupta, P. Singh, Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi. Chem. Soc. 23(8), 1119–1136 (2019). https://doi.org/10.1016/j.jscs.2019.07.003

    Article  CAS  Google Scholar 

  10. Y. Zhao, Y. Xu, J. Zeng, B. Kong, X. Geng, D. Li, X. Gao, K. Liang, L. Xu, J. Lian, S. Huang, J. Qiu, Y. Huang, H. Li, Low-crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors. RSC Adv. 7(87), 55513–55522 (2017). https://doi.org/10.1039/c7ra11741h

    Article  CAS  Google Scholar 

  11. H. M. EI-Sayed, Evidence on the presence of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction in CoFe2O4@Au nano structure. Superlattices Microstruct. 91, 98–104 (2016). https://doi.org/10.1016/j.spmi.2016.01.009

    Article  CAS  Google Scholar 

  12. R. Shukla, R.S. Ningthoujam, S.S. Umare, S.J. Sharma, S. Kurian, R.K. Vatsa, A.K. Tyagi, N.S. Gajbhiye, Decrease of superparamagnetic fraction at room temperature in ultrafine CoFe2O4 particles by Ag doping. ICAME 2007, 631–639 (2008). https://doi.org/10.1007/978-3-540-78697-9_86

    Article  Google Scholar 

  13. N. Chandel, K. Sharma, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, P. Singh, Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. Arab. J. Chem. 13(2), 4324–4340 (2020). https://doi.org/10.1016/j.arabjc.2019.08.005

    Article  CAS  Google Scholar 

  14. W. He, L. Liu, T. Ma, H. Han, J. Zhu, Y. Liu, Z. Fang, Z. Yang, K, Guo, Controllable morphology CoFe2O4/g-C3N4 p-n heterojunction photocatalysts with built-in electric field enhance photocatalytic performance. Appl. Catal. B 306, 121107 (2022). https://doi.org/10.1016/j.apcatb.2022.121107

    Article  CAS  Google Scholar 

  15. Y. Jia, H. Ma, C. Liu, Au nanoparticles enhanced Z-scheme Au-CoFe2O4/MoS2 visible light photocatalyst with magnetic retrievability. Appl. Surf. Sci. 463, 854–862 (2019). https://doi.org/10.1016/j.apsusc.2018.09.008

    Article  CAS  Google Scholar 

  16. F. Siadatnasab, S. Farhadi, A. Khataee, Sonocatalytic performance of magnetically separable CuS/CoFe2O4 nanohybrid for efficient degradation of organic dyes. Ultrason. Sonochem. 44, 359–367 (2018). https://doi.org/10.1016/j.ultsonch.2018.02.051

    Article  CAS  Google Scholar 

  17. S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf. A Physicochem. Eng. Asp. 478, 71–80 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.035

    Article  CAS  Google Scholar 

  18. H. Katsumata, M. Taniguchi, S. Kaneco, T. Suzuki, Photocatalytic degradation of bisphenol A by Ag3PO4 under visible light. Catal. Commun. 34, 30–34 (2013). https://doi.org/10.1016/j.catcom.2013.01.012

    Article  CAS  Google Scholar 

  19. M. Duan, D. Wu, J. Wu, H. Tong, Synthesis of ZnWO4/Ag3PO4: p-n heterojunction photocatalyst with enhanced visible-light degradation performance of RhB. J. Mater. Sci. Mater. Electron. 33(10), 7543–7558 (2022). https://doi.org/10.1007/s10854-022-07898-3

    Article  CAS  Google Scholar 

  20. F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie, Y. Deng, Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl. Catal. B-Environ. 200, 330–342 (2017). https://doi.org/10.1016/j.apcatb.2016.07.021

    Article  CAS  Google Scholar 

  21. X. Chen, Y. Dai, J. Guo, F. Bu, X. Wang, Synthesis of micro-nano Ag3PO4/ZnFe2O4 with different organic additives and its enhanced photocatalytic activity under visible light irradiation. Mater. Sci. Semicond. Process. 41, 335–342 (2016). https://doi.org/10.1016/j.mssp.2015.10.010

    Article  CAS  Google Scholar 

  22. J. Cao, B. Luo, H. Lin, B. Xu, S. Chen, Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. J. Hazard. Mater. 217–218, 107–115 (2012). https://doi.org/10.1016/j.jhazmat.2012.03.002

    Article  CAS  Google Scholar 

  23. Y. Chen, P. Zhu, M. Duan, J. Li, Z. Ren, P. Wang, Fabrication of a magnetically separable and dual Z-scheme PANI/Ag3PO4/NiFe2O4 composite with enhanced visible-light photocatalytic activity for organic pollutant elimination. Appl. Surf. Sci. 486, 198–211 (2019). https://doi.org/10.1016/j.apsusc.2019.04.232

    Article  CAS  Google Scholar 

  24. N. Güy, K. Atacan, E. Karaca, M. Özacar, Role of Ag3PO4 and Fe3O4 on the photocatalytic performance of magnetic Ag3PO4/ZnO/Fe3O4 nanocomposite under visible light irradiation. Sol. Energy 166, 308–316 (2018). https://doi.org/10.1016/j.solener.2018.03.045

    Article  CAS  Google Scholar 

  25. J. Zhuang, J. Liu, Z. Wu, Z. Li, K. Zhu, K. Yan, Y. Xu, Y. Huang, Z. Lin, Formation of Ag3PO4/AgBr composites with Z-scheme configuration by an in situ strategy and their superior photocatalytic activity with excellent anti-photocorrosion performance. J. Mater. Sci. Mater. Electron. 30(12), 11368–11377 (2019). https://doi.org/10.1007/s10854-019-01485-9

    Article  CAS  Google Scholar 

  26. G. Hou, Y. Li, W. An, S. Gao, W. Zhang, W. Cui, Fabrication and photocatalytic activity of floating type Ag3PO4/ZnFe2O4/FACs photocatalyst. Mater. Res. Bull. 94, 263–271 (2017). https://doi.org/10.1016/j.materresbull.2017.06.008

    Article  CAS  Google Scholar 

  27. Z. Liu, H. Feng, S. Xue, P. Xie, L. Li, X. Hou, J. Gong, X. Wei, J. Huang, D. Wu, The triple-component Ag3PO4–CoFe2O4–GO synthesis and visible light photocatalytic performance. Appl. Surf. Sci. 458, 880–892 (2018). https://doi.org/10.1016/j.apsusc.2018.07.166

    Article  CAS  Google Scholar 

  28. E. Abroushan, S. Farhadi, A. Zabardasti, Ag3PO4/CoFe2O4 magnetic nanocomposite: synthesis, characterization and applications in catalytic reduction of nitrophenols and sunlight-assisted photocatalytic degradation of organic dye pollutants. RSC Adv. 7, 18293–18304 (2017). https://doi.org/10.1039/c7ra01728f

    Article  CAS  Google Scholar 

  29. S. Huang, Y. Xu, Q. Liu, T. Zhou, Y. Zhao, L. Jing, H. Xu, H. Li, Enhancing reactive oxygen species generation and photocatalytic performance via adding oxygen reduction reaction catalysts into the photocatalysts. Appl. Catal. B-Environ. 218, 174–185 (2017). https://doi.org/10.1016/j.apcatb.2017.06.030

    Article  CAS  Google Scholar 

  30. D. Li, Y. Liu, D. Xu, Q. Liu, H. Tang, Construction of g-C3N4 nanotube/Ag3PO4 S-scheme heterojunction for enhanced photocatalytic oxygen generation. Ceram. Int. 48(2), 2169–2176 (2022). https://doi.org/10.1016/j.ceramint.2021.09.308

    Article  CAS  Google Scholar 

  31. N. Dong, F. He, J. Xin, Q. Wang, Z. Lei, B. Su, Preparation of CoFe2O4 magnetic fiber nanomaterial via a template-assisted solvothermal method. Mater. Lett. 141, 238–241 (2015). https://doi.org/10.1016/j.matlet.2014.11.054

    Article  CAS  Google Scholar 

  32. X. Chen, Y. Dai, X. Wang, J. Guo, T. Liu, F. Li, Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2,4-dichlorophenol under visible light irradiation. J. Hazard. Mater. 292, 9–18 (2015). https://doi.org/10.1016/j.jhazmat.2015.01.032

    Article  CAS  Google Scholar 

  33. A. Kubala-Kukuś, D. Banaś, I. Stabrawa, K. Szary, D. Sobota, U. Majewska, J. Wudarczyk-Moćko, J. Braziewicz, M. Pajek, Analysis of Ti and TiO2 nanolayers by total reflection X-ray photoelectron spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 43–50 (2018). https://doi.org/10.1016/j.sab.2018.03.012

    Article  CAS  Google Scholar 

  34. M. Xu, J. Li, Y. Yan, X. Zhao, J. Yan, Y. Zhang, B. Lai, X. Chen, L. Song, Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles. Chem. Eng. J. 369, 403–413 (2019). https://doi.org/10.1016/j.cej.2019.03.075

    Article  CAS  Google Scholar 

  35. M. Lallimathi, P. Kalisamy, M. Suryamathi, T. Alshahrani, M. Shkir, M. Venkatachalam, B. Palanivel, Carbon dot loaded integrative CoFe2O4/g-C3N4 P-N heterojunction: direct solar light-driven photocatalytic H2 evolution and organic pollutant degradation. ChemistrySelect 5(34), 10607–10617 (2020). https://doi.org/10.1002/slct.202002543

    Article  CAS  Google Scholar 

  36. L. Liu, W. He, Z. Fang, Z. Yang, K. Guo, Z. Wang, From core-shell to yolk-shell: improved catalytic performance toward CoFe2O4@ Hollow@ mesoporous TiO2 toward selective oxidation of styrene. Ind. Eng. Chem. Res. 59(45), 19938–19951 (2020). https://doi.org/10.1021/acs.iecr.0c03884

    Article  CAS  Google Scholar 

  37. L. Lei, D. Wang, Y. Kang, Y. de Rancourt, X. de Mimérand, J.G. Jin, Phosphor-enhanced, visible-light-storing g-C3N4/Ag3PO4/SrAl2O4: Eu2+, Dy3+ photocatalyst immobilized on fractal 3D-printed supports. ACS Appl. Mater. Interfaces 14(9), 11820–11833 (2022). https://doi.org/10.1021/acsami.1c23650

    Article  CAS  Google Scholar 

  38. J. Song, J. Zhang, A. Zada, Y. Ma, K. Qi, CoFe2O4/NiFe2O4 S-scheme composite for photocatalytic decomposition of antibiotic contaminants. Ceram. Int. 49(8), 12327–12333 (2023). https://doi.org/10.1016/j.ceramint.2022.12.088

    Article  CAS  Google Scholar 

  39. Y. Su, X. Xin, Y. Wang, T. Wang, X. Wang, Unprecedented catalytic performance in disordered nickel niobate through photo-synergistic promotion. Chem. Commun. 50(32), 4200 (2014). https://doi.org/10.1039/c3cc49825e

    Article  CAS  Google Scholar 

Download references

Funding

Nanyang City science and technology development plan project, KJGG218, Guangling Zuo.

Author information

Authors and Affiliations

Authors

Contributions

HY, LX and YWcontributed to investigation, data curation, formal analysis, and investigation and writing. HZ, XX, and KW contributed to visualization and Formal analysis. GZ contributed to supervision, funding acquisition, writing-review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hongyong Ye.

Ethics declarations

Competing interest

The author declared that there is no confict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Xia, L., Wang, Y. et al. Magnetic Ag3PO4/CoFe2O4 Z-scheme heterojunction material for photocatalytic decomposition of ofloxacin. J Mater Sci: Mater Electron 34, 2090 (2023). https://doi.org/10.1007/s10854-023-11567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11567-4

Navigation