Skip to main content
Log in

Facile fabrication of 2D-2D g-C3N4/Sb heterojunction with enhanced photocatalytic degradation activity of methylene blue

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A novel and efficient photocatalyst g-C3N4/Sb was constructed by impregnating graphitic carbon nitride with 2D antimonene in this study. XRD, SEM, FT-IR and XPS results all confirmed the successful construction of g-C3N4/Sb heterojunction. Inhibited recombination of photogenerated electron–hole pairs and enhanced photocatalytic activity are observed for the composited sample. Under light irradiation, the composite shows a three-fold increased degradation rate for methylene blue. The reaction efficiency retains about 92.4% after three test cycles, suggesting great stability of the catalyst. Meanwhile, photoelectrochemical test results show that the overpotential for oxygen evolution reaction is lowered to 322 mV and the photocurrent response is elevated by six times for g-C3N4/Sb compared to pristine g-C3N4. It is concluded that the junction between 2D antimonene and g-C3N4 provides a channel for the high-speed transfer of photogenerated carriers, which helps to improve photocatalytic performance. This work provides a new way to construct the two-dimensional heterojunction based on g-C3N4 for improved catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ding Y, Ma X, Zhang X (2023) Flame-assisted hydrolysis synthesis as a green combustion alternative for the preparation of metal oxide photocatalysts: Reactions and opportunities. J Alloys Comp 959:170540. https://doi.org/10.1016/j.jallcom.2023.170540

    Article  CAS  Google Scholar 

  2. Ma X, Wang Z, Cui X et al (2019) Surface photovoltage spectroscopy observes sub-BandGap defects in hydrothermally synthesized SrTiO3 nanocrystals. J Phys Chem C 123:25081–25090. https://doi.org/10.1021/acs.jpcc.9b06727

    Article  CAS  Google Scholar 

  3. Ou M, Wan S, Zhong Q et al (2018) Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. J Appl Catal B: Environ 221:97–107. https://doi.org/10.1016/j.apcatb.2017.09.005G

    Article  CAS  Google Scholar 

  4. Ma X (2022) Graphynes for photocatalytic and photoelectrochemical applications. Prog Chem 34:1042–1060. https://doi.org/10.7536/pc210636

    Article  CAS  Google Scholar 

  5. Wang X, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. J Nat Mater 8:76–80. https://doi.org/10.1038/nmat2317

    Article  CAS  Google Scholar 

  6. Li Y, Zhou M, Chen B et al (2020) Recent advances in g-C3N4-based heterojunction photocatalysts. J Mater Sci Tech 56:1–17. https://doi.org/10.1016/j.jmst.2020.04.028

    Article  Google Scholar 

  7. Wang Y, Tan G, Dang M et al (2022) Study on surface modification of g-C3N4 photocatalyst. J Alloys Comp 908:164507. https://doi.org/10.1016/j.jallcom.2022.164507

    Article  CAS  Google Scholar 

  8. Niu Y, Hu F, Xu H et al (2023) Exploration for high performance g-C3N4 photocatalyst from different precursors. Mater Today Comm 34:105040. https://doi.org/10.1016/j.mtcomm.2022.105040

    Article  CAS  Google Scholar 

  9. Zhou Q, Peng F, Ni Y et al (2016) Long afterglow phosphor driven round-the-clock g-C3N4 photocatalyst. J Photochem Photobio A: Chem 328:182–188. https://doi.org/10.1016/j.jphotochem.2016.06.002

    Article  CAS  Google Scholar 

  10. Fan C, Feng Q, Xu G et al (2018) Enhanced photocatalytic performances of ultrafine g-C3N4 nanosheets obtained by gaseous stripping with wet nitrogen. Appl Surface Sci 427:730–738. https://doi.org/10.1016/j.apsusc.2017.08.090

    Article  CAS  Google Scholar 

  11. Wang T, Zheng J, Cai J et al (2022) Visible-light-driven photocatalytic degradation of dye and antibiotics by activated biochar composited with K doped g-C3N4: Effects, mechanisms, actual wastewater treatment and disinfection. Sci Total Environ 839:155955. https://doi.org/10.1016/j.scitotenv.2022.155955

    Article  PubMed  CAS  Google Scholar 

  12. Li Y, Jin R, Xing Y et al (2016) Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv Energy Mater 6:1601273. https://doi.org/10.1002/aenm.201601273

    Article  CAS  Google Scholar 

  13. Si H, Deng Q, Yin C et al (2020) Gas exfoliation of graphitic carbon nitride to improve the photocatalytic hydrogen evolution of metal-free 2D/2D g-C3N4/graphdiyne heterojunction. J Alloy Compd 833:155054. https://doi.org/10.1016/j.jallcom.2020.155054

    Article  CAS  Google Scholar 

  14. Zhao G, Hao S, Guo J et al (2021) Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. Chin J Catal 42:501–509. https://doi.org/10.1016/S1872-2067(20)63670-1

    Article  CAS  Google Scholar 

  15. Liu Q, Ai L, Jiang J (2018) MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J Mater Chem A 6:4102–4110. https://doi.org/10.1039/C7TA09350K

    Article  CAS  Google Scholar 

  16. Song X, Hu Y, Zheng M et al (2016) Solvent-free in situ synthesis of g-C3N4/{001}TiO2 composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation. Appl Catal B 182:587–597. https://doi.org/10.1016/j.apcatb.2015.10.007

    Article  CAS  Google Scholar 

  17. Sun Z, Wang H, Wu Z et al (2018) g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal Today 300:160–172. https://doi.org/10.1016/j.cattod.2017.05.033

    Article  CAS  Google Scholar 

  18. Humayun M, Ullah H, Shu L et al (2021) Plasmon assisted highly efficient visible light catalytic CO2 reduction over the noble metal decorated Sr-incorporated g-C3N4. Nano-Micro Lett 13:209. https://doi.org/10.1007/s40820-021-00736-x

    Article  CAS  Google Scholar 

  19. Sun C, Liu Y, Wang Z et al (2021) Self-assembled g-C3N4 nanotubes/graphdiyne composite with enhanced photocatalytic CO2 reduction. J Alloys Compd 868:159045. https://doi.org/10.1016/j.jallcom.2021.159045

    Article  CAS  Google Scholar 

  20. Han Q, Wang B, Gao J et al (2016) Atomically Thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10(2):2745–2751. https://doi.org/10.1021/acsnano.5b07831

    Article  PubMed  CAS  Google Scholar 

  21. Zhang G, Lan ZA, Lin L et al (2016) Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci 7(5):3062–3066. https://doi.org/10.1039/C5SC04572J

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yang S, Gong Y, Zhang J et al (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25(17):2452–2456. https://doi.org/10.1002/adma.201204453

    Article  PubMed  CAS  Google Scholar 

  23. Zhu B, Zhang J, Jiang C et al (2017) First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Appl Catal B: Environ 207:27–34. https://doi.org/10.1016/j.apcatb.2017.02.020

    Article  CAS  Google Scholar 

  24. Lin Y, Wang L, Yu Y et al (2021) Construction of molecularly doped and cyano defects co-modified graphitic carbon nitride for the efficient photocatalytic degradation of tetracycline hydrochloride. New J Chem 45(39):18598–18608. https://doi.org/10.1039/D1NJ03602E

    Article  CAS  Google Scholar 

  25. Guo S, Tang Y, Xie Y et al (2017) P-doped tubular g-C3N4 with surface carbon defects: Universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl Catal B: Environ 218:664–671. https://doi.org/10.1016/j.apcatb.2017.07.022

    Article  CAS  Google Scholar 

  26. Xia X, Xie C, Xu B et al (2022) Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J Ind Eng Chem 105:303–312. https://doi.org/10.1016/j.jiec.2021.09.033

    Article  CAS  Google Scholar 

  27. Shang Q, Fang Y, Yin X et al (2021) Structure modulation of g-C3N4 in TiO2{001}/gC3N4 hetero-structures for boosting photocatalytic hydrogen evolution. RSC Adv 11:37089. https://doi.org/10.1039/D1RA07691D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. You Z, Wu C, Shen Q et al (2018) A novel efficient g-C3N4@BiOI p–n heterojunction photocatalyst constructed through the assembly of g-C3N4 nanoparticles. Dalton Trans 47:7353–7361. https://doi.org/10.1039/C8DT01322E

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, He J, Zhou B et al (2018) Bandgap-tunable preparation of smooth and large two-dimensional antimonene. Angew Chem Int Ed 57:8668–8673. https://doi.org/10.1002/anie.201804886

    Article  CAS  Google Scholar 

  30. Wang H, Yuan H, Hong S et al (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 9:2664–2680. https://doi.org/10.1039/C4CS00287C

    Article  Google Scholar 

  31. Ares P, Palacios JJ, Abellan G et al (2018) Recent progress on antimonene: A new bidimensional material. Adv Mater 30:1703771. https://doi.org/10.1002/adma.201703771

    Article  CAS  Google Scholar 

  32. Gao J, Zhang S, Ma X et al (2023) Two-dimensional Sb modified TiO2 nanorod arrays as photoanodes for efficient solar water splitting. Nanomater 13:1293. https://doi.org/10.3390/nano13071293

    Article  CAS  Google Scholar 

  33. Xu X, Zhang F, Wang M et al (2018) Excellent nonlinear absorption properties of β-antimonene nanosheets. J Mater Chem C 6:2848–2853. https://doi.org/10.1039/C8TC00306H

    Article  Google Scholar 

  34. Zhang S, Zhou W, Ma Y et al (2017) Antimonene oxides: Emerging tunable direct bandgap semiconductor and novel topological insulator. Nano Lett 17:3434–3440. https://doi.org/10.1021/acs.nanolett.7b00297

    Article  PubMed  CAS  Google Scholar 

  35. Barrio J, Gibaja C, García-Tecedor M et al (2020) Electrophoretic deposition of antimonene for photoelectrochemical applications. Appl Mater Today 20:100714. https://doi.org/10.1016/j.apmt.2020.100714

    Article  Google Scholar 

  36. He N, Cao S, Gu J et al (2022) Well-designed oxidized Sb/g-C3N4 2D/2D nanosheets heterojunction with enhanced visible-light photocatalytic disinfection activity. J Colloid Interface Sci 606:1284–1298. https://doi.org/10.1016/j.jcis.2021.08.122

    Article  PubMed  CAS  Google Scholar 

  37. Ma D, Zhao J, Wang R et al (2019) Ultrathin GeSe nanosheets: From systematic synthesis to studies of carrier dynamics and applications for a high-performance UV–vis photodetector. ACS Appl Mater Inter 11:4278–4287. https://doi.org/10.1021/acsami.8b19836

    Article  CAS  Google Scholar 

  38. Zhang F, He J, Xiang Y et al (2018) Semimetal–semiconductor transitions for monolayer antimonene nanosheets and their application in perovskite solar cells. Adv Mater 30:1803244. https://doi.org/10.1002/adma.201803244

    Article  CAS  Google Scholar 

  39. Cui Y, Ding Z, Liu P et al (2012) Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys Chem Phys 14(4):1455–1462. https://doi.org/10.1039/C1CP22820J

    Article  CAS  Google Scholar 

  40. Gao W, Zhao Y, Mao Z et al (2018) Enhanced visible light photocatalytic activity for g-C3N4/SnO2: Sb composites induced by Sb doping. J Mater Sci 53(13):9473–9485. https://doi.org/10.1007/s10853-018-2259-7

    Article  CAS  Google Scholar 

  41. Wang C, Han T, Xin C et al (2021) Synthesizing the high surface area g-C3N4 for greatly enhanced hydrogen production. Catalysts 11(7):832. https://doi.org/10.3390/catal11070832

    Article  CAS  Google Scholar 

  42. Papailias I, Todorova N, Giannakopoulou T et al (2020) Novel torus shaped g-C3N4 photocatalysts. Appl Catal B: Environ 268:118733. https://doi.org/10.1016/j.apcatb.2020.118733

    Article  CAS  Google Scholar 

  43. Yang X, Qian F, Zou G et al (2016) Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Appl Catal B: Environ 193:22–35. https://doi.org/10.1016/j.apcatb.2016.03.060

    Article  CAS  Google Scholar 

  44. Jagadhesan S, Senthilkumar N, Senthilnathan V et al (2018) Sb doped ZnO nanostructures prepared via co-precipitation approach for the enhancement of MB dye degradation. Mater Res Express 5(2):025040. https://doi.org/10.1088/2053-1591/aaaf80

    Article  CAS  Google Scholar 

  45. Meng S, An P, Chen L et al (2021) Integrating Ru-modulated CoP nanosheets binary co-catalyst with 2D g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution activity. J Collold Interface Sci 585:108–117. https://doi.org/10.1016/j.jcis.2020.11.066

    Article  CAS  Google Scholar 

  46. Kang S, He M, Chen M et al (2019) Polymeric structure optimization of g-C3N4 by using confined argon-assisted highly-ionized ammonia plasma for improved photocatalytic activity. J Collold Interface Sci 556:214–223. https://doi.org/10.1016/j.jcis.2019.08.040

    Article  CAS  Google Scholar 

  47. Zhang J, Fu J, Dai K (2022) Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity. J Mater Sci Tech 116:192–198. https://doi.org/10.1016/j.jmst.2021.10.045

    Article  CAS  Google Scholar 

  48. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  49. Sahin M, Gubbuk IH (2022) Green synthesis of palladium nanoparticles and investigation of their catalytic activity for methylene blue, methyl orange and rhodamine B degradation by sodium borohydride. Reac Kinet Mech Cat 135:999–1010. https://doi.org/10.1007/s11144-022-02185-y

    Article  CAS  Google Scholar 

  50. Mai X, Lin W, Chen JN et al (2022) Synthesis of Z-scheme (001)-TiO2/Bi5O7I heterojunctions with enhanced interfacial charge separation and photocatalytic degradation of Rhodamine B. Reac Kinet Mech Cat 135:3447–3459. https://doi.org/10.1007/s11144-022-02309-4

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.52002241), Class III Peak Discipline of Shanghai—Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing), and Shanghai University Teachers’ Production, Study and Practice plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4658 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Liao, X., Ma, X. et al. Facile fabrication of 2D-2D g-C3N4/Sb heterojunction with enhanced photocatalytic degradation activity of methylene blue. Reac Kinet Mech Cat 137, 453–466 (2024). https://doi.org/10.1007/s11144-023-02535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02535-4

Keywords

Navigation