Skip to main content
Log in

Construction of Ag/Bi7O9I3 Catalyst for Photocatalytic Degradation of Rhodamine B

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we fabricated an Ag/Bi7O9I3 composite and tested the composite for the photodegradation of Rhodamine B (RhB) dye under UV–vis light irradiation. XRD, FESEM, TEM, UV–visible absorbance, XPS studies, ESR, and electrochemical analysis were used to characterize the synthesized photocatalysts. The synthesized catalyst displayed a maximum degradation efficiency of 98.45% in the 150-min experiment, which is nearly 1.56 times higher than Bi7O9I3. The enhanced photocatalytic activity of Ag/Bi7O9I3 is attributed to the acceleration of charge separation and transfer of charge carriers with the inclusion of Ag. The improvement in photocatalytic efficiency of Ag/Bi7O9I3 can be attributed to Ag deposition, which acts as an electron sink to avoid recombination of photogenerated electrons and holes. Additionally, Ag nanoparticles may show plasmonic resonance producing more electron–hole pairs in Bi7O9I3. Furthermore, a variety of tests were carried out on Ag/Bi7O9I3 in order to clarify how different factors affect the photodegradation efficiency. The medium with pH = 3, catalyst loading = 35 mg, and Rhodamine B concentration = 10 ppm resulted in highest activity. Using a radical scavenging experiment and ESR studies, the effective radicals in promoting dye degradation have been identified, and ·O2 radicals turned out to be the main radicals in promoting photocatalysis. Additionally, the reusability and degradation mechanisms of the enhanced photodegradation on the specified photocatalyst were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hassaan, M.A.; El Nemr, A.; Hassaan, A.: Health and environmental impacts of dyes: mini review. Am. J. Environ. Sci. Eng. 1, 64–67 (2017)

    Google Scholar 

  2. Tavakoli-Azar, T.; Mahjoub, A.R.; Sadjadi, M.S.; Farhadyar, N.; Sadr, M.H.: Improving the photocatalytic performance of a perovskite ZnTiO3 through ZnTiO3@ S nanocomposites for degradation of Crystal violet and Rhodamine B pollutants under sunlight. Inorg. Chem. Commun. 119, 108091 (2020)

    Article  Google Scholar 

  3. Dhiman, P.; Rana, G.; Dawi, E.A.; Kumar, A.; Sharma, G.; Kumar, A.; Sharma, J.: Tuning the photocatalytic performance of Ni–Zn ferrite catalyst using Nd doping for solar light-driven catalytic degradation of methylene blue. Water 15, 187 (2023)

    Article  Google Scholar 

  4. Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hérnandez, S.; Cauda, V.: Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO. Appl. Catal. B 243, 629–640 (2019)

    Article  Google Scholar 

  5. Abid, M.F.; Zablouk, M.A.; Abid-Alameer, A.M.: Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran. J. Environ. Health Sci. Eng. 9, 1–9 (2012)

    Article  Google Scholar 

  6. Dominguez-Ramos, A.; Irabien, A.: Analysis and modeling of the continuous electro-oxidation process for organic matter removal in urban wastewater treatment. Ind. Eng. Chem. Res. 52, 7534–7540 (2013)

    Article  Google Scholar 

  7. Bello, M.M.; Raman, A.A.A.: Adsorption and oxidation techniques to remove organic pollutants from water. In: Crini, G., Lichtfouse E. (eds.) Green Adsorbents for Pollutant Removal: Fundamentals and Design, pp. 249–300. Springer International Publishing, Cham (2018)

  8. Lee, J.-W.; Choi, S.-P.; Thiruvenkatachari, R.; Shim, W.-G.; Moon, H.: Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes Pigm. 69, 196–203 (2006)

    Article  Google Scholar 

  9. Sang, Y.; Cao, X.; Dai, G.; Wang, L.; Peng, Y.; Geng, B.: Facile one-pot synthesis of novel hierarchical Bi2O3/Bi2S3 nanoflower photocatalyst with intrinsic pn junction for efficient photocatalytic removals of RhB and Cr (VI). J. Hazard. Mater. 381, 120942 (2020)

    Article  Google Scholar 

  10. Sharma, J.; Dhiman, P.; Kumar, A.; Dawi, E.A.; Rana, G.; Sharma, G.: 2D-2D g-C3N5/Bi24O31Br10 S-scheme nanostructures with increased photocatalytic efficiency for crystal violet removal. Chem. Eng. Res. Des. 195, 432–446 (2023)

    Article  Google Scholar 

  11. Chachvalvutikul, A.; Luangwanta, T.; Kaowphong, S.: Double Z-scheme FeVO4/Bi4O5Br2/BiOBr ternary heterojunction photocatalyst for simultaneous photocatalytic removal of hexavalent chromium and rhodamine B. J. Colloid Interface Sci. 603, 738–757 (2021)

    Article  Google Scholar 

  12. Wang, X.; Xu, G.; Tu, Y.; Wu, D.; Li, A.; Xie, X.: BiOBr/PBCD-BD dual-function catalyst with oxygen vacancies for Acid Orange 7 removal: evaluation of adsorption-photocatalysis performance and synergy mechanism. Chem. Eng. J. 411, 128456 (2021)

    Article  Google Scholar 

  13. Oppong, S.O.-B.; Opoku, F.; Govender, P.P.: Tuning the electronic and structural properties of Gd-TiO2-GO nanocomposites for enhancing photodegradation of IC dye: the role of Gd3+ ion. Appl. Catal. B 243, 106–120 (2019)

    Article  Google Scholar 

  14. Sharma, J.; Dhiman, P.; Alshgari, R.A.; ALOthman, Z.A.; Kumar, A.; Sharma, G.; Rana, G.: Advances in photocatalytic environmental and clean energy applications of Bismuth-rich oxy halides (BixOyXz) based heterojunctions: a review. Mater. Today Sustain. 21, 100327 (2023)

    Article  Google Scholar 

  15. Kumar, A.; Sharma, G.; Kumari, A.; Guo, C.; Naushad, M.; Vo, D.-V.N.; Iqbal, J.; Stadler, F.J.: Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: boosting via I/I3− and Bi3+/Bi5+ redox mediators. Appl. Catal. B 284, 119808 (2021)

    Article  Google Scholar 

  16. Xie, X.; Liu, Y.; Dong, X.; Lin, C.; Wen, X.; Yan, Q.: Synthesis and characterization of Fe3O4/BiOI np heterojunction magnetic photocatalysts. Appl. Surf. Sci. 455, 742–747 (2018)

    Article  Google Scholar 

  17. Asl, E.A.; Haghighi, M.; Talati, A.: Sono-solvothermal fabrication of flowerlike Bi7O9I3-MgAl2O4 pn nano-heterostructure photocatalyst with enhanced solar-light-driven degradation of methylene blue. Sol. Energy 184, 426–439 (2019)

    Article  Google Scholar 

  18. Shoghi, P.; Hamzehloo, M.: Facile fabrication of novel Z-scheme g-C3N4 nanosheets/ Bi7O9I3 photocatalysts with highly rapid photodegradation of RhB under visible light irradiation. J. Colloid Interface Sci. 616, 453–464 (2022)

    Article  Google Scholar 

  19. Jia, T.; Wu, J.; Ji, Z.; Peng, C.; Liu, Q.; Shi, M.; Zhu, J.; Wang, H.; Liu, D.; Zhou, M.: Surface defect engineering of Fe-doped Bi7O9I3 microflowers for ameliorating charge-carrier separation and molecular oxygen activation. Appl. Catal. B 284, 119727 (2021)

    Article  Google Scholar 

  20. Shah, Z.H.; Wang, J.; Ge, Y.; Wang, C.; Mao, W.; Zhang, S.; Lu, R.: Highly enhanced plasmonic photocatalytic activity of Ag/AgCl/TiO2 by CuO co-catalyst. J. Mater. Chem. A 3, 3568–3575 (2015)

    Article  Google Scholar 

  21. Jia, T.; Wu, J.; Song, J.; Liu, Q.; Wang, J.; Qi, Y.; He, P.; Qi, X.; Yang, L.; Zhao, P.: In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity. Chem. Eng. J. 396, 125258 (2020)

    Article  Google Scholar 

  22. Wang, M.; Tan, G.; Zhang, D.; Li, B.; Lv, L.; Wang, Y.; Ren, H.; Zhang, X.; Xia, A.; Liu, Y.: Defect-mediated Z-scheme BiO2-x/Bi2O2. 75 photocatalyst for full spectrum solar-driven organic dyes degradation. Appl. Catal. B Environ. 254, 98–112 (2019)

    Article  Google Scholar 

  23. Liu, H.; Chen, P.; Yuan, X.; Zhang, Y.; Huang, H.; Dong, F.: Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets. Chin. J. Catal.. J. Catal. 40, 620–630 (2019)

    Article  Google Scholar 

  24. Liu, G.; Hou, G.; Mao, X.; Qi, X.; Song, Y.; Ma, X.; Wu, J.; Luo, G.; Yao, H.; Liu, Q.: Rational design of CeO2/Bi7O9I3 flower-like nanosphere with Z-scheme heterojunction and oxygen vacancy for enhancing photocatalytic activity. Chem. Eng. J. 431, 133254 (2022)

    Article  Google Scholar 

  25. Zhu, L.; Shen, D.; Zhang, H.; Luo, K.H.; Li, C.: Fabrication of Z-scheme Bi7O9I3/g-C3N4 heterojunction modified by carbon quantum dots for synchronous photocatalytic removal of Cr (VI) and organic pollutants. J. Hazard. Mater. 446, 130663 (2023)

    Article  Google Scholar 

  26. Tateishi, I.; Katsumata, H.; Suzuki, T.; Kaneco, S.: Visible-light-induced AgI/Bi7O9I3 composites with enhanced photocatalytic activity. Catal. Lett. 147, 1503–1509 (2017)

    Article  Google Scholar 

  27. Chachvalvutikul, A.; Luangwanta, T.; Inceesungvorn, B.; Kaowphong, S.: Bismuth-rich oxyhalide (Bi7O9I3–Bi4O5Br2) solid-solution photocatalysts for the degradation of phenolic compounds under visible light. J. Colloid Interface Sci. 641, 595–609 (2023)

    Article  Google Scholar 

  28. Xiao, X.; Zhang, W.-D.: Hierarchical Bi7O9I3 micro/nano-architecture: facile synthesis, growth mechanism, and high visible light photocatalytic performance. RSC Adv. 1, 1099–1105 (2011)

    Article  Google Scholar 

  29. Zhang, S.; Zhang, B.-P.; Li, S.; Huang, Z.; Yang, C.; Wang, H.: Enhanced photocatalytic activity in Ag-nanoparticle-dispersed BaTiO3 composite thin films: Role of charge transfer. J. Adv. Ceram. 6, 1–10 (2017)

    Article  Google Scholar 

  30. Wu, P.; Feng, L.; Liang, Y.; Zhang, X.; Li, X.; Tian, S.; Hu, H.; Yin, G.; Khan, S.: Large-scale synthesis of 2D bismuth-enriched bismuth oxyiodides at low temperatures for high-performance supercapacitor and photocatalytic applications. J. Mater. Sci. Mater. Electron. 31, 5385–5401 (2020)

    Article  Google Scholar 

  31. Wang, Y.; He, J.; Zhu, Y.; Zhang, H.; Yang, C.; Wang, K.; Wu, S.-C.; Chueh, Y.-L.; Jiang, W.: Hierarchical Bi-doped BiOBr microspheres assembled from nanosheets with (0 0 1) facet exposed via crystal facet engineering toward highly efficient visible light photocatalysis. Appl. Surf. Sci. 514, 145927 (2020)

    Article  Google Scholar 

  32. Chang, C.; Zhu, L.; Fu, Y.; Chu, X.: Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation. Chem. Eng. J. 233, 305–314 (2013)

    Article  Google Scholar 

  33. Dhiman, P.; Kumar, A.; Rana, G.; Sharma, G.: Cobalt–zinc nanoferrite for synergistic photocatalytic and peroxymonosulfate-assisted degradation of sulfosalicylic acid. J. Mater. Sci. 58, 9938–9966 (2023)

    Article  Google Scholar 

  34. Guo, N.; Cao, X.; Li, Q.; Han, Y.; Li, H.; Yuan, Y.: Oxygen-vacancy-rich Ag/Bi5O7Br nanosheets enable improved photocatalytic NO removal and oxygen evolution under visible light exposure. Adv. Powder Technol. 34, 103927 (2023)

    Article  Google Scholar 

  35. Phu, N.D.; Hoang, L.H.; Van Hai, P.; Huy, T.Q.; Chen, X.-B.; Chou, W.C.: Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Ag doping and Ag nanoparticles modification. J. Alloy. Compd. 824, 153914 (2020)

    Article  Google Scholar 

  36. Yu, Y.; Liu, Y.; Wu, X.; Weng, Z.; Hou, Y.; Wu, L.: Enhanced visible light photocatalytic degradation of metoprolol by Ag–Bi2WO6–graphene composite. Sep. Purif. Technol. 142, 1–7 (2015)

    Article  Google Scholar 

  37. Zhang, X.; Ai, Z.; Jia, F.; Zhang, L.: Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112, 747–753 (2008)

    Article  Google Scholar 

  38. Dhiman, P.; Rana, G.; Kumar, A.; Sharma, G.; Vo, D.-V.N.; AlGarni, T.S.; Naushad, M.; Alothman, Z.A.: Nanostructured magnetic inverse spinel Ni–Zn ferrite as environmental friendly visible light driven photo-degradation of levofloxacin. Chem. Eng. Res. Des. 175, 85–101 (2021)

    Article  Google Scholar 

  39. Ma, S.; Zhan, S.; Jia, Y.; Shi, Q.; Zhou, Q.: Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B 186, 77–87 (2016)

    Article  Google Scholar 

  40. He, R.; Zheng, Y.; Feng, J.; Mo, Q.; Gong, K.; Xu, D.: In situ synthesis of flexible Bi7O9I3/carbon paper with enhanced photocatalytic activity. J. Mater. Sci. Technol. 178, 12–119 (2023)

    Google Scholar 

  41. Liu, C.; Xu, J.; Niu, J.; Chen, M.; Zhou, Y.: Direct Z-scheme Ag3PO4/Bi4Ti3O12 heterojunction with enhanced photocatalytic performance for sulfamethoxazole degradation. Sep. Purif. Technol. 241, 116622 (2020)

    Article  Google Scholar 

  42. Sharma, S.K.; Kumar, A.; Dhiman, P.; Sharma, G.; Stadler, F.J.: ZIF-67/Ag3VO4 based S-scheme heterojunction for visible light driven rapid photocatalytic removal of venlafaxine. Opt. Mater. 146, 114541 (2023)

    Article  Google Scholar 

  43. Fard, S.G.; Haghighi, M.; Shabani, M.: Facile one-pot ultrasound-assisted solvothermal fabrication of ball-flowerlike nanostructured (BiOBr) x (Bi7O9I3) 1–x solid-solution for high active photodegradation of antibiotic levofloxacin under sun-light. Appl. Catal. B 248, 320–331 (2019)

    Article  Google Scholar 

  44. Wang, L.; Ali, J.; Zhang, C.; Mailhot, G.; Pan, G.: Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. J. Environ. Chem. Eng. 8, 102104 (2020)

    Article  Google Scholar 

  45. Mohod, A.V.; Momotko, M.; Shah, N.S.; Marchel, M.; Imran, M.; Kong, L.; Boczkaj, G.: Degradation of rhodamine dyes by advanced oxidation processes (AOPs)—focus on cavitation and photocatalysis—a critical review. Water Resour. Ind. 30, 100220 (2023)

    Article  Google Scholar 

  46. Hamza, M.A.; Rizk, S.A.; Ezz-Elregal, E.-E.M.; El-Rahman, S.A.A.; Ramadan, S.K.; Abou-Gamra, Z.M.: Photosensitization of TiO2 microspheres by novel Quinazoline-derivative as visible-light-harvesting antenna for enhanced Rhodamine B photodegradation. Sci. Rep. 13, 12929 (2023)

    Article  Google Scholar 

  47. Abou-Gamra, Z.M.; Ahmed, M.A.; Hamza, M.A.: Investigation of commercial PbCrO4/TiO2 for photodegradation of rhodamine B in aqueous solution by visible light. Nanotechnol Environ Eng 2, 12 (2017)

    Article  Google Scholar 

  48. Zhang, F.; Sun, Z.; Yan, B.; Cao, Z.; Li, H.; Jing, G.; Liu, X.: Degradation of Rhodamine B by CuFe2O4 nanoparticles anchored on montmorillonite as an activator of sodium persulfate. J. Taiwan Inst. Chem. Eng. 150, 105073 (2023)

    Article  Google Scholar 

  49. Kumari, S.; Wan, F.; Thakur, A.; Singh, S.; Thakur, P.: Retrievable nano-sized Co–Mg–Zn ferrite as an active photocatalyst and adsorbent for removing organic and biological contaminants for water purification. Ceram. Int. 50, 3210–3221 (2023)

    Article  Google Scholar 

  50. Chachvalvutikul, A.; Jakmunee, J.; Thongtem, S.; Kittiwachana, S.; Kaowphong, S.: Novel FeVO4/Bi7O9I3 nanocomposite with enhanced photocatalytic dye degradation and photoelectrochemical properties. Appl. Surf. Sci. 475, 175–184 (2019)

    Article  Google Scholar 

  51. Din, S.T.; Xie, W.-F.; Yang, W.: Synthesis of Co3O4 nanoparticles-decorated Bi12O17Cl2 hierarchical microspheres for enhanced photocatalytic degradation of RhB and BPA. Int. J. Mol. Sci. 23, 15028 (2022)

    Article  Google Scholar 

  52. Zhang, L.; Meng, Y.; Shen, H.; Li, J.; Yang, C.; Xie, B.; Xia, S.: Photocatalytic degradation of rhodamine B by Bi2O3@LDHs S–scheme heterojunction: performance, kinetics and mechanism. Appl. Surf. Sci. 567, 150760 (2021)

    Article  Google Scholar 

  53. Liu, J.; Wang, H.; Chang, M.-J.; Sun, M.; He, Z.-W.; Zhang, C.-M.; Zhu, W.-Y.; Chen, J.-L.; Du, H.-L.; Peng, L.-G.; Luo, Z.-M.; Zhang, L.: Magnetically separatable CoFe2O4/BiOCl: controllable synthesis, superior photocatalytic performance and mechanism towards decomposing RhB, NOR and Cr(VI) under visible light. Colloids Surf. A 648, 129299 (2022)

    Article  Google Scholar 

  54. Fenelon, E.; Bui, D.-P.; Tran, H.H.; You, S.-J.; Wang, Y.-F.; Cao, T.M.; Van Pham, V.: Straightforward synthesis of SnO2/Bi2S3/BiOCl–Bi24O31Cl10 composites for drastically enhancing rhodamine B photocatalytic degradation under visible light. ACS Omega 5, 20438–20449 (2020)

    Article  Google Scholar 

  55. Li, C.; Wang, B.; Zhang, F.; Song, N.; Liu, G.; Wang, C.; Zhong, S.: Performance of Ag/BiOBr/GO composite photocatalyst for visible-light-driven dye pollutants degradation. J. Market. Res. 9, 610–621 (2020)

    Google Scholar 

  56. Li, S.; Lu, H.; Zhu, G.; Hojamberdiev, M.; Gao, J.; Wei, X.; Liu, P.: A recyclable and stable BiOI/agarose hybrid gel photocatalyst for photodegradation of Rhodamine B. J. Mater. Sci. Mater. Electron. 29, 16454–16459 (2018)

    Article  Google Scholar 

  57. Zheng, Y.; Zhang, X.; Zhao, J.; Yang, P.: Assembled fabrication of α-Fe2O3/BiOCl heterojunctions with enhanced photocatalytic performance. Appl. Surf. Sci. 430, 585–594 (2018)

    Article  Google Scholar 

  58. Li, Q.-Y.; Han, S.-D.; Liu, J.-G.; Sun, L.-Y.; Wang, Y.-L.; Wei, Q.; Cui, S.-P.: Controllable preparation and photocatalytic performance of hollow hierarchical porous TiO2/Ag composite microspheres. Colloids Surf. A 658, 130707 (2023)

    Article  Google Scholar 

  59. Liu, X.; Xu, J.; Zhang, T.; Zhang, J.; Xia, D.; Du, Y.; Jiang, Y.; Lin, K.: Construction of Ag nanocluster-modified Ag3PO4 containing silver vacancies via in-situ reduction: with enhancing the photocatalytic degradation activity of sulfamethoxazole. J. Colloid Interface Sci. 629, 989–1002 (2023)

    Article  Google Scholar 

  60. Chen, X.; Sun, B.; Chu, J.; Han, Z.; Wang, Y.; Du, Y.; Han, X.; Xu, P.: Oxygen vacancy-induced construction of CoO/h-TiO2 Z-scheme heterostructures for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 14, 28945–28955 (2022)

    Article  Google Scholar 

  61. Miao, Z.; Wang, G.; Zhang, X.; Dong, X.: Oxygen vacancies modified TiO2/Ti3C2 derived from MXenes for enhanced photocatalytic degradation of organic pollutants: the crucial role of oxygen vacancy to schottky junction. Appl. Surf. Sci. 528, 146929 (2020)

    Article  Google Scholar 

  62. Jalalat, Z.; Habibi-Yangjeh, A.; Hemmati-Eslamlu, P.; Akinay, Y.: Anchoring modified g-C3N4 with Bi5O7Br: S-scheme photocatalysts with boosted activities in elimination of inorganic and organic pollutants. Inorg. Chem. Commun. 158, 111565 (2023)

    Article  Google Scholar 

  63. Jinguji, K.; Watanabe, M.; Morita, R.; Takaoka, Y.; Hossain, M.S.; Song, J.T.; Takagaki, A.; Matsuda, J.; Ishihara, T.: Visible light driven hydrogen peroxide production by oxygen and phosphorus co-doped CoP-C3N4 photocatalyst. Catal. Today 426, 114400 (2024)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the partial support of the Ajman University, Internal Research Grant No. DRGS Ref. 2023-IRG-HBS-02.

Author information

Authors and Affiliations

Authors

Contributions

Dhiman Pooja contributed to writing original draft, validation and supervision, Sharma Jayati contributed to writing original draft, data curation, and investigation; Kumar Amit contributed to review and editing. Sharma Gaurav contributed to review and editing, Dawi Elmuez A contributed to resources, review and editing.

Corresponding author

Correspondence to Pooja Dhiman.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, P., Sharma, J., Kumar, A. et al. Construction of Ag/Bi7O9I3 Catalyst for Photocatalytic Degradation of Rhodamine B. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08931-9

Keywords

Navigation