Skip to main content
Log in

Preparation of SiNWs/rGO/CuO Nanocomposites as Effective Photocatalyst for Degradation of Ciprofloxacin Assisted with Peroxymonosulfate

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Photocatalysis technology coupled with peroxymonosulfate (PMS) is a promising strategy for water purification. In this work, copper oxide (CuO) and reduced graphene oxide (rGO) are deposited on silicon nanowires (SiNWs) via electrophoretic process. The obtained samples are characterized by SEM coupled with EDX, SIMS, XRD, Raman and UV–Vis spectrophotometry. The SiNWs/rGO/CuO nanocomposites were applied as photocatalyst to degrade ciprofloxacin (CIP) by activating PMS under visible light irradiation. Under these conditions, approximately 96% of CIP was degraded within 40 min. While, 81% of CIP was degraded within 240 min when the SiNWs/rGO/CuO photocatalyst was used without PMS. The results of radical trapping tests show that \({h}^{+},{O}_{2}^{.-}\), \({SO}_{4}^{.-}\), and \({OH}^{.}\) are involved in CIP degradation process. A possible mechanism of CIP degradation was discussed. This work provides new idea to develop an efficient photocatalyst/PMS system to eliminate emerging pollutants from aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Sayed, J.A. Khan, L.A. Shah, N.S. Shah, F. Shah, H.M. Khan, P. Zhang, H. Arandiyan, Solar light responsive poly (vinyl alcohol)-assisted hydrothermal synthesis of immobilized TiO2/Ti film with the addition of peroxymonosulfate for photocatalytic degradation of ciprofloxacin in aqueous media: a mechanistic approach. J. Phys. Chem. C 122, 406–421 (2018)

    CAS  Google Scholar 

  2. X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, H. Guo, G.-M. Zeng, Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: influencing factors, possible degradation pathways, and mechanism insight. J. Catal. 358, 141–154 (2018)

    CAS  Google Scholar 

  3. N. Rahman, P. Varshney, Facile synthesis and characterization of Zn (II)-impregnated chitosan/graphene oxide: evaluation of its efficiency for removal of ciprofloxacin from aqueous solution. J. Inorg. Organomet. Polym. Mater. (2021). https://doi.org/10.1007/s10904-021-01981-8

    Article  Google Scholar 

  4. X. Zhang, R. Li, M. Jia, S. Wang, Y. Huang, C. Chen, Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway. Chem. Eng. J. 274, 290–297 (2015)

    CAS  Google Scholar 

  5. N. Wachter, J.M. Aquino, M. Denadai, J.C. Barreiro, A.J. Silva, Q.B. Cass, N. Bocchi, R.C. Rocha-Filho, Electrochemical degradation of the antibiotic ciprofloxacin in a flow reactor using distinct BDD anodes: reaction kinetics, identification and toxicity of the degradation products. Chemosphere 234, 461–470 (2019)

    CAS  PubMed  Google Scholar 

  6. C. Liang, X. Zhang, P. Feng, H. Chai, Y. Huang, ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics. Chem. Eng. J. 344, 95–104 (2018)

    CAS  Google Scholar 

  7. P. Nasehi, B. Mahmoudi, S.F. Abbaspour, M.S. Moghaddam, Cadmium adsorption using novel MnFe 2 O 4-TiO 2-UIO-66 magnetic nanoparticles and condition optimization using a response surface methodology. RSC Adv. 9, 20087–20099 (2019)

    CAS  Google Scholar 

  8. P. Nasehi, M.S. Moghaddam, S.F. Abbaspour, N. Karachi, Preparation and characterization of a novel Mn-Fe2O4 nanoparticle loaded on activated carbon adsorbent for kinetic, thermodynamic and isotherm surveys of aluminum ion adsorption. Sep. Sci. Technol. 55, 1078–1088 (2020)

    CAS  Google Scholar 

  9. P. Nasehi, M. Saei Moghaddam, S.F. Abbaspour, R. Asadi, Cr (VI) adsorption using synthesis novel UIO-66-MnFe2O4-TiO2 magnetic nanoparticles by experimental design. J. Appl. Res. Chem.-Polym. Eng. 4, 33–48 (2021)

    Google Scholar 

  10. P. Bhattacharya, D. Mukherjee, S. Dey, S. Ghosh, S. Banerjee, Development and performance evaluation of a novel CuO/TiO2 ceramic ultrafiltration membrane for ciprofloxacin removal. Mater. Chem. Phys. 229, 106–116 (2019)

    CAS  Google Scholar 

  11. O. Baaloudj, I. Assadi, N. Nasrallah, A. El Jery, L. Khezami, A.A. Assadi, Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: a review. J. Water Process Eng. 42, 102089 (2021)

    Google Scholar 

  12. F. Chen, G.-X. Huang, F.-B. Yao, Q. Yang, Y.-M. Zheng, Q.-B. Zhao, H.-Q. Yu, Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: performance and mechanism. Water Res. 173, 115559 (2020)

    CAS  PubMed  Google Scholar 

  13. C. Jin, J. Kang, Z. Li, M. Wang, Z. Wu, Y. Xie, Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate. Appl. Surf. Sci. 514, 146076 (2020)

    CAS  Google Scholar 

  14. M. El-Kemary, H. El-Shamy, I. El-Mehasseb, Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J. Lumin. 130, 2327–2331 (2010)

    CAS  Google Scholar 

  15. A. Hassani, A. Khataee, S. Karaca, Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: effect of operation parameters and artificial neural network modeling. J. Mol. Catal. A: Chem. 409, 149–161 (2015)

    CAS  Google Scholar 

  16. D.B. Hernandez-Uresti, A. Martínez-de la Cruz, L.M. Torres-Martínez, Photocatalytic degradation of organic compounds by PbMoO4 synthesized by a microwave-assisted solvothermal method. Ceram. Int. 42, 3096–3103 (2016)

    CAS  Google Scholar 

  17. T. Senasu, S. Nijpanich, S. Juabrum, N. Chanlek, S. Nanan, CdS/BiOBr heterojunction photocatalyst with high performance for solar-light-driven degradation of ciprofloxacin and norfloxacin antibiotics. Appl. Surf. Sci. 567, 1550 (2021)

    Google Scholar 

  18. J. Li, L. Jin, F. Liu, X. Liu, Synthesis of cocoon-like Ag3PO4 and its high-performance in photocatalytic degradation of ciprofloxacin. Mater. Lett. 242, 139–142 (2019)

    CAS  Google Scholar 

  19. S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic degradation of ciprofloxacin under solar irradiation. J. Mater. Sci. 54, 5726–5742 (2019)

    CAS  Google Scholar 

  20. D. Liu, J. Ma, R. Long, C. Gao, Y. Xiong, Silicon nanostructures for solar-driven catalytic applications. Nano Today 17, 96–116 (2017)

    CAS  Google Scholar 

  21. M. Shao, L. Cheng, X. Zhang, D.D.D. Ma, S.-T. Lee, Excellent photocatalysis of HF-treated silicon nanowires. J. Am. Chem. Soc. 131, 17738–17739 (2009)

    CAS  PubMed  Google Scholar 

  22. S. Naama, T. Hadjersi, H. Menari, G. Nezzal, L.B. Ahmed, S. Lamrani, Enhancement of the tartrazine photodegradation by modification of silicon nanowires with metal nanoparticles. Mater. Res. Bull. 76, 317–326 (2016)

    CAS  Google Scholar 

  23. N. Brahiti, T. Hadjersi, H. Menari, S. Amirouche, O. El Kechai, Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires. Mater. Res. Bull. 62, 30–36 (2015)

    CAS  Google Scholar 

  24. S. Amdouni, Y. Cherifi, Y. Coffinier, A. Addad, M.A. Zaïbi, M. Oueslati, R. Boukherroub, Gold nanoparticles coated silicon nanowires for efficient catalytic and photocatalytic applications. Mater. Sci. Semicond. Process. 75, 206–213 (2018)

    CAS  Google Scholar 

  25. O. Fellahi, A. Barras, G.-H. Pan, Y. Coffinier, T. Hadjersi, M. Maamache, S. Szunerits, R. Boukherroub, Reduction of Cr (VI) to Cr (III) using silicon nanowire arrays under visible light irradiation. J. Hazard. Mater. 304, 441–447 (2016)

    CAS  PubMed  Google Scholar 

  26. M. Ifires, T. Hadjersi, R. Chegroune, S. Lamrani, F. Moulai, M. Mebarki, A. Manseri, One-step electrodeposition of superhydrophobic NiO-Co (OH) 2 urchin-like structures on Si nanowires as photocatalyst for RhB degradation under visible light. J. Alloys Compd. 774, 908–917 (2019)

    CAS  Google Scholar 

  27. C. Han, N. Zhang, Y.-J. Xu, Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis. Nano Today 11, 351–372 (2016)

    CAS  Google Scholar 

  28. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)

    CAS  PubMed  Google Scholar 

  29. A.V. Karim, A. Selvaraj, Graphene composites in photocatalytic oxidation of aqueous organic contaminants–a state of art. Process Saf. Environ. Prot. 146, 136–160 (2021)

    CAS  Google Scholar 

  30. X. Hou, J. Liu, W. Guo, S. Li, Y. Guo, Y. Shi, C. Zhang, A novel 3D-structured flower-like bismuth tungstate/mag-graphene nanoplates composite with excellent visible-light photocatalytic activity for ciprofloxacin degradation. Catal. Commun. 121, 27–31 (2019)

    CAS  Google Scholar 

  31. S.A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M. Sher, U. Fatima, Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos B: Eng. 175, 107120 (2019)

    CAS  Google Scholar 

  32. A. Raja, P. Rajasekaran, K. Selvakumar, M. Arunpandian, K. Kaviyarasu, S.A. Bahadur, M. Swaminathan, Visible active reduced graphene oxide-BiVO4-ZnO ternary photocatalyst for efficient removal of ciprofloxacin. Sep. Purif. Technol. 233, 1196 (2020)

    Google Scholar 

  33. R. Zhang, T. Zhang, Y. Cai, X. Zhu, Q. Han, Y. Li, Y. Liu, Reduced graphene oxide-doped Ag 3 PO 4 nanostructure as a high efficiency photocatalyst under visible light. J. Inorg. Organomet. Polym Mater. 30, 543–553 (2020)

    CAS  Google Scholar 

  34. W. Zhu, F. Sun, R. Goei, Y. Zhou, Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl. Catal. B 207, 93–102 (2017)

    CAS  Google Scholar 

  35. Z. Chen, J. Liang, X. Xu, G. He, H. Chen, CdS–Bi 2 MoO 6/RGO nanocomposites for efficient degradation of ciprofloxacin under visible light. J. Mater. Sci. 55, 6065–6077 (2020)

    CAS  Google Scholar 

  36. A. Kumar, G. Sharma, M. Naushad, T. Ahamad, R.C. Veses, F.J. Stadler, Highly visible active Ag2CrO4/Ag/BiFeO3@ RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: the triggering effect of Ag and RGO. Chem. Eng. J. 370, 148–165 (2019)

    CAS  Google Scholar 

  37. N. Lu, P. Wang, Y. Su, H. Yu, N. Liu, X. Quan, Construction of Z-Scheme g-C3N4/RGO/WO3 with in situ photoreduced graphene oxide as electron mediator for efficient photocatalytic degradation of ciprofloxacin. Chemosphere 215, 444–453 (2019)

    CAS  PubMed  Google Scholar 

  38. Y. Pan, D. Wu, The rGO/BiOBr/Bi4O5Br 2 composites with stacked nanosheets for ciprofloxacin photodegradation under visible light irradiation. Z. Anorg. Allg. Chem. 645, 1153–1160 (2019)

    CAS  Google Scholar 

  39. A. Raja, K. Selvakumar, P. Rajasekaran, M. Arunpandian, S. Ashokkumar, K. Kaviyarasu, S.A. Bahadur, M. Swaminathan, Visible active reduced graphene oxide loaded titania for photodecomposition of ciprofloxacin and its antibacterial activity. Colloids Surf., A 564, 23–30 (2019)

    CAS  Google Scholar 

  40. H. Meng, K. Fan, J. Low, J. Yu, Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution. Dalton Trans. 45, 13717–13725 (2016)

    CAS  PubMed  Google Scholar 

  41. J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S.A. Suthanthiraraj, R. Jayavel, D. Nedumaran, Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J. Inorg. Organomet. Polym. Mater. 28, 2046–2055 (2018)

    CAS  Google Scholar 

  42. A. Soam, P. Kavle, A. Kumbhar, R.O. Dusane, Performance enhancement of micro-supercapacitor by coating of graphene on silicon nanowires at room temperature. Curr. Appl. Phys. 17, 314–320 (2017)

    Google Scholar 

  43. R. Bhujel, S. Rai, U. Deka, J. Biswas, B.P. Swain, Fabrication and characterization of SiNWs/polymer-reduced graphene oxide nanocomposite heterojunction for photovoltaic device applications. Mater. Today: Proc. 39, 1852–1855 (2021)

    CAS  Google Scholar 

  44. M. Gaidi, K. Daoudi, S. Columbus, A. Hajjaji, M.A. El Khakani, B. Bessais, Enhanced photocatalytic activities of silicon nanowires/graphene oxide nanocomposite: effect of etching parameters. J. Environ. Sci. 101, 123–134 (2021)

    Google Scholar 

  45. Z. Guo, J.-Y. Jung, K. Zhou, Y. Xiao, S.-W. Jee, S. Moiz, J.-H. Lee, Optical properties of silicon nanowires array fabricated by metal-assisted electroless etching, next generation (Nano) photonic and cell technologies for solar energy conversion (International Society for Optics and Photonics, Bellingham, 2010), p. 77721C

    Google Scholar 

  46. J. Chen, X. Xiao, Y. Wang, M. Lu, X. Zeng, Novel AgI/BiOBr/reduced graphene oxide Z-scheme photocatalytic system for efficient degradation of tetracycline. J. Alloys Compd. 800, 88–98 (2019)

    CAS  Google Scholar 

  47. J. Huang, W. Chen, X. Yu, X. Fu, Y. Zhu, Y. Zhang, Fabrication of a ternary BiOCl/CQDs/rGO photocatalyst: The roles of CQDs and rGO in adsorption-photocatalytic removal of ciprofloxacin. Colloids Surf. A: Physicochem. Eng. Asp. 597, 124758 (2020)

    CAS  Google Scholar 

  48. X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, H. Tang, Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catal. 3, 363–369 (2013)

    CAS  Google Scholar 

  49. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’Homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)

    CAS  PubMed  Google Scholar 

  50. Y. Murashima, R. Ohtani, T. Matsui, H. Takehira, R. Yokota, M. Nakamura, L.F. Lindoy, S. Hayami, Coexistence of electrical conductivity and ferromagnetism in a hybrid material formed from reduced graphene oxide and manganese oxide. Dalton Trans. 44, 5049–5052 (2015)

    CAS  PubMed  Google Scholar 

  51. M. Wang, H. Wu, C. Shen, S. Luo, D. Wang, L. He, C. Xia, G. Zhu, Seaweed-like 2D–2D architecture of MoS2/rGO composites for enhanced selective aerobic oxidative coupling of amines. ChemCatChem 11, 1935–1942 (2019)

    Google Scholar 

  52. C.-M. Chen, J.-Q. Huang, Q. Zhang, W.-Z. Gong, Q.-H. Yang, M.-Z. Wang, Y.-G. Yang, Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 50, 659–667 (2012)

    CAS  Google Scholar 

  53. J. Wang, X. Yu, X. Fu, Y. Zhu, Y. Zhang, Accelerating carrier separation of Ag3PO4 via synergetic effect of PANI and rGO for enhanced photocatalytic performance towards ciprofloxacin. Mater. Sci. Semicond. Process. 121, 1329 (2021)

    Google Scholar 

  54. M. Wang, L.D. Duong, J.-S. Oh, N.T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee, J.-D. Nam, Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl. Mater. Interfaces. 6, 1747–1753 (2014)

    CAS  PubMed  Google Scholar 

  55. N. Megouda, T. Hadjersi, Y. Coffinier, S. Szunerits, R. Boukherroub, Investigation of morphology, reflectance and photocatalytic activity of nanostructured silicon surfaces. Microelectron. Eng. 159, 94–101 (2016)

    CAS  Google Scholar 

  56. Z. Huang, P. Zhong, C. Wang, X. Zhang, C. Zhang, Silicon nanowires/reduced graphene oxide composites for enhanced photoelectrochemical properties. ACS Appl. Mater. Interfaces. 5, 1961–1966 (2013)

    CAS  PubMed  Google Scholar 

  57. J. Low, J. Yu, W. Ho, Graphene-based photocatalysts for CO2 reduction to solar fuel. J. Phys. Chem. Lett. 6, 4244–4251 (2015)

    CAS  PubMed  Google Scholar 

  58. X. Wang, W. Lu, Z. Zhao, H. Zhong, Z. Zhu, W. Chen, In situ stable growth of β-FeOOH on g-C3N4 for deep oxidation of emerging contaminants by photocatalytic activation of peroxymonosulfate under solar irradiation. Chem. Eng. J. 400, 125872 (2020)

    CAS  Google Scholar 

  59. X. Lin, S.-H. Li, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, Constructing film composites of silicon nanowires@ CdS quantum dot arrays with ameliorated photocatalytic performance. New J. Chem. 42, 14096–14103 (2018)

    CAS  Google Scholar 

  60. S. Paul, J. Sultana, A. Bhattacharyya, A. Karmakar, S. Chattopadhyay, Investigation of the comparative photovoltaic performance of n-ZnO nanowire/p-Si and n-ZnO nanowire/p-CuO heterojunctions grown by chemical bath deposition method. Optik 164, 745–752 (2018)

    CAS  Google Scholar 

  61. M. Rafieezadeh, A.H. Kianfar, Synthesis and characterization of the magnetic submicrocube Fe3O4/TiO2/CuO as a reusable photocatalyst for the degradation of dyes under sunlight irradiation. Environ. Technol. Innovation 23, 101756 (2021)

    CAS  Google Scholar 

  62. Y. Zhou, J. Li, C. Liu, P. Huo, H. Wang, Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity. Appl. Surf. Sci. 458, 586–596 (2018)

    CAS  Google Scholar 

  63. N. Rachedi, T. Hadjersi, F. Moulai, N. Dokhane, A. Manseri, S. Bouanik, Effect of electrolyte type on properties of diamond-like carbon films electrodeposited onto n-type Si substrate, application as electrode for supercapacitors. Silicon 12, 2445–2453 (2020)

    CAS  Google Scholar 

  64. Y. Bao, K. Chen, Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism. Appl. Surf. Sci. 437, 51–61 (2018)

    CAS  Google Scholar 

  65. A. Mishra, A. Panigrahi, P. Mal, S. Penta, G. Padmaja, G. Bera, P. Das, P. Rambabu, G.R. Turpu, Rapid photodegradation of methylene blue dye by rGO-V2O5 nano composite. J. Alloys Compd. 842, 155746 (2020)

    CAS  Google Scholar 

  66. C.-C. Wang, F.-S. Shieu, H.C. Shih, Enhanced photodegradation by RGO/ZnO core-shell nanostructures. J. Environ. Chem. Eng. 8, 103589 (2020)

    CAS  Google Scholar 

  67. P. Bharathi, S. Harish, J. Archana, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, M. Shimomura, Y. Hayakawa, Enhanced charge transfer and separation of hierarchical CuO/ZnO composites: the synergistic effect of photocatalysis for the mineralization of organic pollutant in water. Appl. Surf. Sci. 484, 884–891 (2019)

    CAS  Google Scholar 

  68. P. Ma, Y. Yu, J. Xie, Z. Fu, Ag3PO4/CuO composites utilizing the synergistic effect of photocatalysis and fenton-like catalysis to dispose organic pollutants. Adv. Powder Technol. 28, 2797–2804 (2017)

    CAS  Google Scholar 

  69. Q. Tang, W. Wu, B. Zhang, J. Luo, H. Zhang, X. Guo, J. Jia, J. Cao, A novel in situ synthesis of Cu/Cu 2 O/CuO/sulfonated polystyrene heterojunction photocatalyst with enhanced photodegradation activity. J. Inorg. Organomet. Polym Mater. 29, 340–345 (2019)

    CAS  Google Scholar 

  70. X. Chen, J. Zhou, Y. Chen, Y. Zhou, L. Ding, H. Liang, X. Li, Degradation of tetracycline hydrochloride by coupling of photocatalysis and peroxymonosulfate oxidation processes using CuO-BiVO4 heterogeneous catalyst. Process Saf. Environ. Prot. 145, 364–377 (2021)

    CAS  Google Scholar 

  71. L.N. Costa, F.X. Nobre, A. de Oliveira Lobo, J.M.E. de Matos, Photodegradation of ciprofloxacin using TiO2/SnO2 nanostructures. Environ. Nanotechnol. Monit. Manag. 16, 100466 (2021)

    Google Scholar 

  72. J. Deng, Y. Ge, C. Tan, H. Wang, Q. Li, S. Zhou, K. Zhang, Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation. Chem. Eng. J. 330, 1390–1400 (2017)

    CAS  Google Scholar 

  73. P. Huo, Y. Tang, M. Zhou, J. Li, Z. Ye, C. Ma, L. Yu, Y. Yan, Fabrication of ZnWO4-CdS heterostructure photocatalysts for visible light induced degradation of ciprofloxacin antibiotics. J. Ind. Eng. Chem. 37, 340–346 (2016)

    CAS  Google Scholar 

  74. C. Lai, M. Zhang, B. Li, D. Huang, G. Zeng, L. Qin, X. Liu, H. Yi, M. Cheng, L. Li, Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight. Chem. Eng. J. 358, 891–902 (2019)

    CAS  Google Scholar 

  75. H. Liu, H. Zhang, M. Chen, C. Zhang, C. Du, J. Peng, K. Jiang, Peroxymonosulfate-assisted photocatalysis with g-C3N4/BiOCOOH nanocomposites for the synergistic removal of organic pollutants. J. Water Process Eng. 38, 101580 (2020)

    Google Scholar 

  76. I. Mukherjee, V. Cilamkoti, R.K. Dutta, Sunlight-driven photocatalytic degradation of ciprofloxacin by carbon dots embedded in ZnO nanostructures. ACS Appl. Nano Mater. 4, 7686–7697 (2021)

    CAS  Google Scholar 

  77. C.-H. Shen, X.-J. Wen, Z.-H. Fei, Z.-T. Liu, Q.-M. Mu, Visible-light-driven activation of peroxymonosulfate for accelerating ciprofloxacin degradation using CeO2/Co3O4 pn heterojunction photocatalysts. Chem. Eng. J. 391, 123612 (2020)

    CAS  Google Scholar 

  78. R. Khaghani, B. Kakavandi, K. Ghadirinejad, E.D. Fard, A. Asadi, Preparation, characterization and catalytic potential of γ-Fe2O3@ AC mesoporous heterojunction for activation of peroxymonosulfate into degradation of cyfluthrin insecticide. Microporous Mesoporous Mater. 284, 111–121 (2019)

    CAS  Google Scholar 

  79. F. Ghanbari, J. Wu, M. Khatebasreh, D. Ding, K.-Y.A. Lin, Efficient treatment for landfill leachate through sequential electrocoagulation, electrooxidation and PMS/UV/CuFe2O4 process. Sep. Purif. Technol. 242, 116828 (2020)

    CAS  Google Scholar 

  80. Y. Huang, S. Kou, X. Zhang, L. Wang, P. Lu, D. Zhang, Facile fabrication of Z-scheme Bi2WO6/WO3 composites for efficient photodegradation of bisphenol A with peroxymonosulfate activation. Nanomaterials 10, 724 (2020)

    CAS  PubMed Central  Google Scholar 

  81. F. Guo, W. Shi, H. Wang, M. Han, W. Guan, H. Huang, Y. Liu, Z. Kang, Study on highly enhanced photocatalytic tetracycline degradation of type II AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts. J. Hazard. Mater. 349, 111–118 (2018)

    CAS  PubMed  Google Scholar 

  82. X. Ren, K. Wu, Z. Qin, X. Zhao, H. Yang, The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance. J. Alloys Compd. 788, 102–109 (2019)

    CAS  Google Scholar 

  83. X. Liu, Z. Wang, Y. Wu, Z. Liang, Y. Guo, Y. Xue, J. Tian, H. Cui, Integrating the Z-scheme heterojunction into a novel Ag2O@ rGO@ reduced TiO2 photocatalyst: broadened light absorption and accelerated charge separation co-mediated highly efficient UV/visible/NIR light photocatalysis. J. Colloid Interface Sci. 538, 689–698 (2019)

    CAS  PubMed  Google Scholar 

  84. D. Ma, J. Wu, M. Gao, Y. Xin, T. Ma, Y. Sun, Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chem. Eng. J. 290, 136–146 (2016)

    CAS  Google Scholar 

  85. S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, Sunlight responsive WO3/ZnO nanorods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water. J. Colloid Interface Sci. 450, 34–44 (2015)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from General Direction of Scientific Research and of Technological Development of Algeria (DGRSDT/MESRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khen, A., Hadjersi, T., Brihi, N. et al. Preparation of SiNWs/rGO/CuO Nanocomposites as Effective Photocatalyst for Degradation of Ciprofloxacin Assisted with Peroxymonosulfate. J Inorg Organomet Polym 32, 1078–1091 (2022). https://doi.org/10.1007/s10904-021-02184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02184-x

Keywords

Navigation