Skip to main content
Log in

Ag3PO4/carbon nanotubes/Ni film electrodes: photoelectrocatalytic properties and mechanism of rhodamine B degradation under an applied negative bias

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ag3PO4/CNTs/Ni composite thin film electrodes were prepared using electrochemical co-deposition. The surface morphology and structural properties of the electrodes were characterized using scanning electron microscopy (SEM), X-ray diffraction, and Raman and UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS). SEM showed that spherical Ag3PO4 nanoparticles (average diameter of 20–30 nm) were distributed uniformly on the outermost layer of the composite film when the fabrication process was optimized. The inner layer consisted of a network structure that contained interlaced Ag3PO4 and CNTs. The photoelectrocatalytic (PEC) activity and stability of the thin films were investigated by following the degradation of rhodamine B (RhB) at a negative bias under visible light irradiation. At an optimum negative bias of − 0.10 V, the efficiency of PEC degradation of RhB was 2.74 times greater than that observed when a Ag3PO4/Ni thin film was used. Importantly, the Ag3PO4/CNTs/Ni composite films exhibited a synergistic photoelectric effect and PEC stability, and could be reused five times without any significant decrease in the catalytic activity of the film. A reaction mechanism for the PEC degradation of RhB at negative bias by the Ag3PO4/CNTs/Ni thin films was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  2. Szabo-Bardos E, Zsilak Z, Horvath O (2008) Photocatalytic degradation of anionic surfactant in titanium dioxide suspension. Prog Colloid Polym Sci 135:21–28

    CAS  Google Scholar 

  3. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  4. Yi ZG, Ye JH, Kikugawa N, Kako T, Ouyang SX, Stuart-Williams H, Yang H, Cao J, Luo W, Li Z, Liu Y, Withers RL (2010) An orthophosphate semiconductor with photo-oxidation properties under visible-light irradiation. Nat Mater 9:559–564

    Article  CAS  Google Scholar 

  5. Bi YP, Hu HY, Ouyang SX, Lu GX, Cao J, Ye JH (2012) Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges. Chem Commun 48:3748–3750

    Article  CAS  Google Scholar 

  6. Yan XH, Gao QX, Yang XF (2013) Recent development on Ag3PO4-based photocatalytic materials. J Chin Ceram Soc 10:1354–1365

    Google Scholar 

  7. Martin DJ, Liu GG, Moniz SJA, Bi YP, Beale AM, Ye JH, Tang JW (2015) Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chem Soc Rev 44:7808–7828

    Article  CAS  Google Scholar 

  8. Li AC, Zhu NN, Li JH, Yang XY, Wang S, Yang L (2015) Preparation of Ag3PO4/Ni thin films and their photocatalytic activity and reaction mechanism for rhodamine B. Chin J Inorg Chem 31:681–688

    CAS  Google Scholar 

  9. Bi YP, Ouyang S, Ye JH (2011) Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I)heterocrystals with enhanced photocatalytic properties and stabilities. Phys Chem Chem Phys 13:10071–10075

    Article  CAS  Google Scholar 

  10. Bi YP, Hu HY, Ouyang S, Jiao ZB, Lu GX, Ye JH (2012) Selective growth of Ag3PO4 submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photoctalytic applications. J Mater Chem 22:14847–14850

    Article  CAS  Google Scholar 

  11. Liu YP, Fang L, Lu HD, Liu LJ, Wang H, Hu CZ (2012) Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light. Catal Commun 17:200–204

    Article  CAS  Google Scholar 

  12. Wang P, Huang BB, Zhang XY, Qin XY, Jin H, Dai Y, Wang ZY, Wei JY, Zhan J, Wang SY, Wang JP, Whangbo MH (2009) Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem Eur J 15:1821–1824

    Article  CAS  Google Scholar 

  13. Li AC, Zhao D, Zhang PP, Sun YY (2017) Photocatalytic degradation of rhodamine B by Ag@AgBr/Ni thin film and reaction mechanism. J Chin Ceram Soc 45:46–53

    CAS  Google Scholar 

  14. Dai WL, Xu H, Yang LX, Luo XB, Tu XM, Luo Y (2015) Ultrasonic-assisted facile synthesis of plasmonic Ag@AgCl cuboids with high visible light photocatalytic performance for rhodamine B degradation. Reac Kinet Mech Cat 115:773–786

    Article  CAS  Google Scholar 

  15. Zhu SY, Xu DF, Fang S, Geng Z, Yang X (2014) Sunlight-responsive Ag2S/Ag3PO4 composite preparation and degradation of salicylic acid. Chem J Chin U 35:1286–1292

    CAS  Google Scholar 

  16. Ma PY, Yu HJ, Yu Y, Wang WM, Wang H, Zhang JY, Fu ZY (2016) Assembly of Ag3PO4 nanoparticles on two-dimensional Ag2S sheets as visible-light-driven photocatalysts. Phys Chem Chem Phys 18:3638–3643

    Article  CAS  Google Scholar 

  17. Zhang HC, Huang H, Ming H, Li HT, Zhang LL, Liu Y, Kang ZH (2012) Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J Mater Chem 22:10501–10506

    Article  CAS  Google Scholar 

  18. Liang QH, Shi Y, Ma WJ, Li Z, Yang XM (2012) Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Phys Chem Chem Phys 14:15657–15665

    Article  CAS  Google Scholar 

  19. Yu CL, Wei LF, Li JD, He HB, Fang W, Zhou WQ (2015) Preparation and characterization of GO/Ag3PO4 composite photocatalyst and its visible light photocatalytic performance. Acta Phys Chim Sin 31:1931–1938

    Google Scholar 

  20. Wang PQ, Chen T, Yu BY, Tao P, Bai Y (2016) Tollen’s-assisted preparation of Ag3PO4/GO photocatalyst with enhanced photocatalytic activity and stability. J Taiwan Inst Chem Eng 000:1–8

    Google Scholar 

  21. Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110:1348–1385

    Article  CAS  Google Scholar 

  22. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 328:760–764

    Article  Google Scholar 

  23. Tian JQ, Li HY, Xing ZC, Wang L, Asiri AM, Abdulrahman O, Al YB, Sun XP (2013) Facile synthesis of MWCNTs/Ag3PO4: novel photocatalysts with enhanced photocatalytic activity under visible light. J Nanopart Res 15:1453

    Article  Google Scholar 

  24. Shi HX, Chen JY, Li GY, Nie X, Zhao HJ, Wong PK, An TC (2013) Synthesis and characterization of novel plasmonic Ag/AgX–CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light. ACS App Mater Inter 5:6959–6967

    Article  CAS  Google Scholar 

  25. Zhang ZG, Huang WQ, Xie Z, Hu WY, Peng P, Huang GF (2017) Simultaneous covalent and noncovalent carbon nanotube/Ag3PO4 hybrids: new insights into the origin of enhanced visible light photocatalytic performance. Phys Chem Chem Phys 19:7955–7963

    Article  CAS  Google Scholar 

  26. Xu H, Wang C, Song YH, Zhu JX, Xu YG, Yan J, Song YX, Li HM (2014) CNT/Ag3PO4 composites with highly enhanced visible light photocatalytic activity and stability. Chem Eng J 241:35–42

    Article  CAS  Google Scholar 

  27. Zanoni MVB, Sene JJ, Anderson MA (2003) Photoelectrocatalytic degradation of remazol brilliant orange 3R on titanium dioxide thin-film electrodes. J Photochem Photobiol A 157:55–63

    Article  CAS  Google Scholar 

  28. Li JQ, Li LP, Zheng L, Xian YZ, Jin LT (2006) Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method. Electrochim Acta 51:4942–4949

    Article  CAS  Google Scholar 

  29. Vinodgopal K, Hotchandani S, Kamat PV (1993) Electrochemically assisted photocatalysis TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J Phys Chem 97:9040–9044

    Article  CAS  Google Scholar 

  30. Yang J, Dai J, Zhao JC, Miao J (2010) Mechanism of photocatalytic degradation of dye MG by TiO2-film electrode with cathodic bias potential. Chin Sci Bull 55:131–139

    Article  CAS  Google Scholar 

  31. Yang J, Chen C, Ji H, Ma WH, Zhao JC (2005) Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B 109:21900–21907

    Article  CAS  Google Scholar 

  32. Yang J, Miao J, Dai J, Li JT (2010) Photoelectrocatalytic degradation of dye pollutants with nano-TiO2 electrode under visible-light irradiation. J Henan Polytech Univ 29:259–265

    CAS  Google Scholar 

  33. Zhao D, Fu JL, Liu Y, Guo FH, Li AC (2017) Photoelectrocatalytic activity and reaction mechanism of Ag2S/Ag3PO4/Ni nanothin films for rhodamine B. Funct Mater Lett 10:1750005

    Article  CAS  Google Scholar 

  34. Liu B, Li ZY, Xu S, Han DD, Lu DY (2014) Enhanced visible-light photocatalytic activities of Ag3PO4/MWCNT nanocomposites fabricated by facile in situ precipitation method. J Alloy Compd 596:19–24

    Article  CAS  Google Scholar 

  35. Wang Z, Yin L, Zhang M, Zhou GW, Fei H, Shi HX, Dai HJ (2014) Synthesis and characterization of Ag3PO4/multiwalled carbon nanotube composite photocatalyst with enhanced photocatalytic activity and stability under visible light. J Mater Sci 49:1585–1593

    Article  CAS  Google Scholar 

  36. Jiang DL, Chen LL, Xie JM, Chen M (2014) Ag2S/g–C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Trans 43:4878–4885

    Article  CAS  Google Scholar 

  37. Chen LL, Jiang DL, He T, Wu ZD, Chen M (2013) In-situ ion exchange synthesis of hierarchical AgI/BiOI microsphere photocatalyst with enhanced photocatalytic properties. CrystEngComm 15:7556–7563

    Article  CAS  Google Scholar 

  38. Liu HJ, Peng TY, Peng ZH, Dai K (2007) Photocatalytic degradation mechanism of RB over Dy-doped WO3 photocatalysts. Wuhan Univ (Nat Sci Ed) 53:127–132

    CAS  Google Scholar 

  39. Li AC, Li JF, Liu YL, Zhang JP, Zhao LP, Lu YH (2013) Photoelectrocatalytic properties and reaction mechanism of (Ni–Mo)/TiO2 film electrode for degradation of rhodamine B at negative bias. Acta Chim Sin 71:815–821

    Article  CAS  Google Scholar 

  40. Wahyuningsih S, Purnawan C, Kartikasari PA, Praistia N (2014) Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode. Chem Pap 68:1248–1256

    Article  CAS  Google Scholar 

  41. Lente G (2015) Deterministic kinetics in chemistry and systems biology the dynamics of complex reaction networks. Springer, New York

    Google Scholar 

Download references

Acknowledgements

The project was supported by the Science and Technology Research of Institutions of Higher Learning of Hebei Province (QN2017128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Li, A., Wu, M. et al. Ag3PO4/carbon nanotubes/Ni film electrodes: photoelectrocatalytic properties and mechanism of rhodamine B degradation under an applied negative bias. Reac Kinet Mech Cat 124, 347–362 (2018). https://doi.org/10.1007/s11144-017-1310-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1310-z

Keywords

Navigation