Skip to main content

Advertisement

Log in

Zinc and zinc-containing biomolecules in childhood brain tumors

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fleming AJ, Chi SN (2012) Brain tumors in children. Curr Probl Pediatr Adolesc Health Care 42:80–103

    Article  PubMed  Google Scholar 

  2. Mueller S, Chang S (2009) Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics 6:570–586

    Article  CAS  PubMed  Google Scholar 

  3. Qi ZX, Cai JJ, Chen LC, Yue Q, Gong Y, Yao Y, Mao Y (2016) TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neuro-Oncol 126:19–26

    Article  CAS  Google Scholar 

  4. Mehrian-Shai R, Yalon M, Simon AJ, Eyal E, Pismenyuk T, Moshe I, Constantini S, Toren A (2015) High metallothionein predicts poor survival in glioblastoma multiforme. BMC Med Genet 8:1–9

    Google Scholar 

  5. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-Oncology 4:278–299

    PubMed  PubMed Central  Google Scholar 

  6. Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99:1515–1522

    Article  CAS  PubMed  Google Scholar 

  7. Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. In: Raetz CRH, Rothman JE, Thorner JW (eds) Kornberg RD. Annual Review of Biochemistry Annual Reviews, Palo Alto, pp. 213–231

    Google Scholar 

  8. Lipkowitz S, Weissman AM (2011) RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11:629–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maret W (2013) Inhibitory zinc sites in enzymes. Biometals 26:197–204

    Article  CAS  PubMed  Google Scholar 

  10. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases. J Biol Inorg Chem 16:1123–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gumulec J, Masarik M, Krizkova S, Adam V, Hubalek J, Hrabeta J, Eckschlager T, Stiborova M, Kizek R (2011) Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr Med Chem 18:5041–5051

    Article  CAS  PubMed  Google Scholar 

  12. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176

    Article  PubMed  Google Scholar 

  13. Qi ST, Song Y, Peng YP, Wang H, Long H, Yu XL, Li ZY, Fang LX, Wu AB, Luo WR, et al. (2012) ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma. PLoS One 7:1–12

    Google Scholar 

  14. Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    Article  CAS  PubMed  Google Scholar 

  16. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  CAS  PubMed  Google Scholar 

  17. Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830

    Article  CAS  PubMed  Google Scholar 

  18. Nagel WW, Vallee BL (1995) Cell-cycle regulation of metallothionein in human colonic-cancer cells. Proc Natl Acad Sci U S A 92:579–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pedersen MO, Larsen A, Pedersen DS, Stoltenberg M, Penkowa M (2009) Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury. Histol Histopath 24:573–586

    CAS  Google Scholar 

  20. Takeda A, Fujii H, Minamino T, Tamano H (2014) Intracellular Zn2+ signaling in cognition. J Neurosci Res 92:819–824

    Article  CAS  PubMed  Google Scholar 

  21. Takeda A, Nakamura M, Fujii H, Tamano H (2013) Synaptic Zn2+ homeostasis and its significance. Metallomics 5:417–423

    Article  CAS  PubMed  Google Scholar 

  22. Frederickson CJ, Suh SW, Silva D, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483S

    CAS  PubMed  Google Scholar 

  23. Sindreu C, Storm DR (2011) Modulation of neuronal signal transduction and memory formation by synaptic zinc. Front Behav Neurosci 5:1–14

    Article  CAS  Google Scholar 

  24. Miles AT, Hawksworth GM, Beattie JH, Rodilla V (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35:35–70

    Article  CAS  PubMed  Google Scholar 

  25. Eckschlager T, Adam V, Hrabeta J, Figova K, Kizek R (2009) Metallothioneins and cancer. Curr Protein Pept Sci 10:360–375

    Article  CAS  PubMed  Google Scholar 

  26. Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317

    Article  CAS  PubMed  Google Scholar 

  27. Krizkova S, Fabrik I, Adam V, Hrabeta P, Eckschlager T, Kizek R (2009) Metallothionein—a promising tool for cancer diagnostics. Bratisl Med J 110:93–97

    CAS  Google Scholar 

  28. Lindeque JZ, Levanets O, Louw R, van der Westhuizen FH (2010) The involvement of metallothioneins in mitochondrial function and disease. Curr Protein Pept Sci 11:292–309

    Article  CAS  PubMed  Google Scholar 

  29. Kadota Y, Suzuki S, Ideta S, Fukinbara Y, Kawakami T, Imai H, Nakagawa Y, Sato M (2010) Enhanced metallothionein gene expression induced by mitochondrial oxidative stress is reduced in phospholipid hydroperoxide glutathione peroxidase-overexpressed cells. Eur J Pharmacol 626:166–170

    Article  CAS  PubMed  Google Scholar 

  30. Verrax J, Pedrosa RC, Beck R, Dejeans N, Taper H, Calderon PB (2009) In situ modulation of oxidative stress: a novel and efficient strategy to kill cancer cells. Curr Med Chem 16:1821–1830

    Article  CAS  PubMed  Google Scholar 

  31. Ostrakhovitch EA, Olsson PE, Jiang S, Cherian MG (2006) Interaction of metallothionein with tumor suppressor p53 protein. FEBS Lett 580:1235–1238

    Article  CAS  PubMed  Google Scholar 

  32. Krizkova S, Fabrik I, Huska D, Adam V, Babula P, Hrabeta J, Eckschlager T, Pochop P, Darsova D, Kukacka J, et al. (2010) An adsorptive transfer technique coupled with Brdicka reaction to reveal the importance of metallothionein in chemotherapy with platinum based cytostatics. Int J Mol Sci 11:4826–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krizkova S, Masarik M, Majzlik P, Kukacka J, Kruseova J, Adam V, Prusa R, Eckschlager T, Stiborova M, Kizek R (2010) Serum metallothionein in newly diagnosed patients with childhood solid tumours. Acta Biochim Pol 57:561–566

    CAS  PubMed  Google Scholar 

  34. Kruseova J, Hynek D, Adam V, Kizek R, Prusa R, Hrabeta J, Eckschlager T (2013) Serum metallothioneins in childhood tumours—a potential prognostic marker. Int J Mol Sci 14:12170–12185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Prusa R, Kukacka J, Vajtr D, Huska D, Alba J, Adam V, Kizek R (2008) New technique for quantitative elelectrochemical determination of total plasma mRNA. Clin Chem 54:A156–A157

    Google Scholar 

  36. Krizkova S, Fabrik I, Adam V, Kukacka J, Prusa R, Chavis GJ, Trnkova L, Strnadel J, Horak V, Kizek R (2008) Utilizing of adsorptive transfer stripping technique Brdicka reaction for determination of metallothioneins level in melanoma cells, blood serum and tissues. Sensors 8:3106–3122

    Article  CAS  PubMed Central  Google Scholar 

  37. Fabrik I, Krizkova S, Huska D, Adam V, Hubalek J, Trnkova L, Eckschlager T, Kukacka J, Prusa R, Kizek R (2008) Employment of electrochemical techniques for metallothionein determination in tumor cell lines and patients with a tumor disease. Electroanalysis 20:1521–1532

    Article  CAS  Google Scholar 

  38. Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, Eckschlager T, Kizek R (2012) Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 44:287–301

    Article  CAS  PubMed  Google Scholar 

  39. Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, PodhorskaOkolow M (2016) Metallothioneins in normal and cancer cells. Cancer Cells:1–117

  40. Bonaventura P, Benedetti G, Albarede F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14:277–285

    Article  CAS  PubMed  Google Scholar 

  41. Tubek S (2007) Zinc supplementation or regulation of its homeostasis: advantages and threats. Biol Trace Elem Res 119:1–9

    Article  CAS  PubMed  Google Scholar 

  42. Leone N, Courbon D, Ducimetiere P, Zureik M (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17:308–314

    Article  PubMed  Google Scholar 

  43. Cousins RJ (1986) Toward a molecular understanding of zinc-metabolism. Clin Physiol Biochem 4:20–30

    CAS  PubMed  Google Scholar 

  44. Wu TJ, Sempos CT, Freudenheim JL, Muti P, Smith E (2004) Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol 14:195–201

    Article  PubMed  Google Scholar 

  45. Arslan M, Demir H, Arslan H, Gokalp AS, Demir C (2011) Trace elements, heavy metals and other biochemical parameters in malignant glioma patients. Asian Pac J Cancer Prev 12:447–451

    PubMed  Google Scholar 

  46. Kensova R, Hynek D, Kynicky J, Konecna M, Eckschlager T, Adam V, Hubalek J, Kizek R (2014) Determination of metal ions in the plasma of children with tumour diseases by differential pulse voltammetry. Int J Electrochem Sci 9:4675–4691

    Google Scholar 

  47. Lu H, Cai L, Mu LN, Lu QY, Zhao JK, Cui Y, Sul JH, Zhou XF, Ding BG, Elashoff RM, et al. (2006) Dietary mineral and trace element intake and squamous cell carcinoma of the esophagus in a Chinese population. Nutr Cancer 55:63–70

    Article  PubMed  Google Scholar 

  48. Zhou W, Park S, Liu G, Miller DP, Wang LI, Pothier L, Wain JC, Lynch TJ, Giovannucci E, Christiani DC (2005) Dietary iron, zinc, and calcium and the risk of lung cancer. Epidemiology 16:772–779

    Article  PubMed  Google Scholar 

  49. Lee DH, Anderson KE, Folsom AR, Jacobs DR (2005) Heme iron, zinc and upper digestive tract cancer: the Iowa Women’s Health Study. Int J Cancer 117:643–647

    Article  CAS  PubMed  Google Scholar 

  50. Gallus S, Foschi R, Negri E, Talamini R, Franceschi S, Montella M, Ramazzotti V, Tavani A, Dal Maso L, La Vecchia C (2007) Dietany zinc and prostate cancer risk: a case-control study from Italy. Eur Urol 52:1052–1057

    Article  CAS  PubMed  Google Scholar 

  51. Dimitropoulou P, Nayee S, Liu JF, Demetriou L, van Tongeren M, Hepworth SJ, Muir KR (2008) Dietary zinc intake and brain cancer in adults: a case-control study. Br J Nutr 99:667–673

    Article  CAS  PubMed  Google Scholar 

  52. Qin ZY, Caruso JA, Lai B, Matusch A, Becker JS (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3:28–37

    Article  CAS  PubMed  Google Scholar 

  53. Zoriy MV, Dehnhardt M, Matusch A, Becker JS (2008) Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectroc Acta Pt B-Atom Spectr 63:375–382

    Article  CAS  Google Scholar 

  54. Takeda A, Tamano H, Oku N (2003) Alteration of zinc concentrations in the brain implanted with C6 glioma. Brain Res 965:170–173

    Article  CAS  PubMed  Google Scholar 

  55. Yoshida D, Ikeda Y, Nakazawa S (1993) Quantitative-analysis of copper, zinc and copper-zinc ratio in selected human brain-tumors. J Neuro-Oncol 16:109–115

    Article  CAS  Google Scholar 

  56. Zhuang GS, Wang YS, Tan MG, Zhi M, Wang YG, Zhang FL (1991) Preliminary-study of trace-elements in human brain-tumor tissues by instrumental neutron-activation analysis. J Radioanal Nucl Chem-Artic 151:327–335

    Article  CAS  Google Scholar 

  57. Wandzilak A, Czyzycki M, Wrobel P, Szczerbowska-Boruchowska M, Radwanska E, Adamek D, Lankosz M (2013) The oxidation states and chemical environments of iron and zinc as potential indicators of brain tumour malignancy grade—preliminary results. Metallomics 5:1547–1553

    Article  CAS  PubMed  Google Scholar 

  58. Wandzilak A, Czyzycki M, Radwanska E, Adamek CD, Geraki K, Lankosz M (2015) X-ray fluorescence study of the concentration of selected trace and minor elements in human brain tumours. Spectroc Acta Pt B-Atom Spectr 114:52–57

    Article  CAS  Google Scholar 

  59. Zaichick VY, Sviridova TV, Zaichick SV (1997) Zinc in human prostate gland: normal, hyperplastic and cancerous. J Radioanal Nucl Chem 217:157–161

    Article  CAS  Google Scholar 

  60. Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15:101–111

    Article  CAS  PubMed  Google Scholar 

  61. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089

    Article  CAS  PubMed  Google Scholar 

  63. Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71:3281–3295

    Article  CAS  PubMed  Google Scholar 

  64. Lin Y, Chen Y, Wang YZ, Yang JX, Zhu VF, Liu YL, Cui XB, Chen L, Yan W, Jiang T, et al. (2013) ZIP4 is a novel molecular marker for glioma. Neuro-Oncology 15:1008–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kang X, Chen R, Zhang J, Li G, Dai PG, Chen C, Wang HJ (2015) Expression profile analysis of zinc transporters (ZIP4, ZIP9, ZIP11, ZnT9) in gliomas and their correlation with IDH1 mutation status. Asian Pac J Cancer Prev 16:3355–3360

    Article  PubMed  Google Scholar 

  66. Yan W, Imanishi M, Futaki S, Sugiura Y (2007) Alpha-helical linker of an artificial 6-zinc finger peptide contributes to selective DNA binding to a discontinuous recognition sequence. Biochemistry 46:8517–8524

    Article  CAS  PubMed  Google Scholar 

  67. Zhou YX, Su ZP, Huang YL, Sun T, Chen SS, Wu TF, Chen GL, Xie XS, Li B, Du ZW (2011) The Zfx gene is expressed in human gliomas and is important in the proliferation and apoptosis of the human malignant glioma cell line U251. J Exp Clin Cancer Res 30:1–10

    Article  CAS  Google Scholar 

  68. Song G, Ouyang GL, Bao SD (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  CAS  PubMed  Google Scholar 

  69. Zhu ZC, Li K, Xu DF, Liu YJ, Tang HL, Xie Q, Xie LQ, Liu JW, Wang HT, Gong Y, et al. (2013) ZFX regulates glioma cell proliferation and survival in vitro and in vivo. J Neuro-Oncol 112:17–25

    Article  CAS  Google Scholar 

  70. DeSouza R-M, Jones BRT, Lowis SP, Kurian KM (2014) Pediatric medulloblastoma—update on molecular classification driving targeted therapies. Front Oncol 4:176–176

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kurisaka M, Mori K (1996) Immunohistochemical study of medulloblastoma with a monoclonal antibody against human copper and zinc-superoxide dismutase. Neurol Med-Chir 36:220–223

    Article  CAS  Google Scholar 

  72. Palmer CJ, Galan-Caridad JM, Weisberg SP, Lei L, Esquilin JM, Croft GF, Wainwright B, Canoll P, Owens DM, Reizis B (2014) Zfx facilitates tumorigenesis caused by activation of the hedgehog pathway. Cancer Res 74:5914–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Santoni M, Burattini L, Nabissi M, Morelli MB, Berardi R, Santoni G, Cascinu S (2013) Essential role of Gli proteins in glioblastoma multiforme. Curr Protein Pept Sci 14:133–140

    Article  CAS  PubMed  Google Scholar 

  74. Dey J, Ditzler S, Knoblaugh SE, Hatton BA, Schelter JM, Cleary MA, Mecham B, Rorke-Adams LB, Olson JM (2012) A distinct smoothened mutation causes severe cerebellar developmental defects and medulloblastoma in a novel transgenic mouse model. Mol Cell Biol 32:4104–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vriend J, Ghavami S, Marzban H (2015) The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Mol Brain 8:1–14

    Article  CAS  Google Scholar 

  76. He QW, Xia YP, Chen SC, Wang Y, Huang M, Huang Y, Li JY, Li YN, Gao Y, Mao L, et al. (2013) Astrocyte-derived sonic hedgehog contributes to angiogenesis in brain microvascular endothelial cells via RhoA/ROCK pathway after oxygen-glucose deprivation. Mol Neurobiol 47:976–987

    Article  CAS  PubMed  Google Scholar 

  77. Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, Kenney AM, Brat DJ, Perry A, Yong WH, et al. (2011) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121:381–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hui CC, Angers S (2011) Gli proteins in development and disease. In: Goldstein L, Lehmann R (eds) Schekman R. Annual review of cell and developmental biology annual reviews, Palo Alto, pp. 513–537

    Google Scholar 

  79. Srivastava VK, Nalbantoglu J (2010) The cellular and developmental biology of medulloblastoma current perspectives on experimental therapeutics. Cancer Biol Ther 9:843–852

    Article  CAS  PubMed  Google Scholar 

  80. Buczkowicz P, Ma J, Hawkins C (2011) GLI2 is a potential therapeutic target in pediatric medulloblastoma. J Neuropathol Exp Neurol 70:430–437

    Article  CAS  PubMed  Google Scholar 

  81. Bar EE, Chaudhry A, Farah MH, Eberhart CG (2007) Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am J Pathol 170:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fan HR, Oro AE, Scott MP, Khavari PA (1997) Induction of basal cell carcinoma features in transgenic human skin expressing sonic hedgehog. Nat Med 3:788–792

    Article  CAS  PubMed  Google Scholar 

  83. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, Paquis P, Almairac F, Fontaine D, Baeza-Kallee N, et al. (2016) A positive feed-forward loop associating EGR1 and PDGFA promotes proliferation and self-renewal in glioblastoma stem cells. J Biol Chem in press

  84. Zhang CR, Zhu QB, He H, Jiang L, Qiang Q, Hu LH, Hu GH, Jiang Y, Ding XH, Lu YC (2016) RIZ1: a potential tumor suppressor in glioma (vol 15, 990, 2015). BMC Cancer 16:1–10

    Article  Google Scholar 

  85. Spina R, Filocamo G, Iaccino E, Scicchitano S, Lupia M, Chiarella E, Mega T, Bernaudo F, Pelaggi D, Mesuraca M, et al. (2013) Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget 4:1280–1292

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rauscher J, Beschorner R, Gierke M, Bisdas S, Braun C, Ebner FH, Schittenhelm J (2014) WT1 expression increases with malignancy and indicates unfavourable outcome in astrocytoma. J Clin Pathol 67:556–561

    Article  PubMed  Google Scholar 

  87. Ryu HH, Jung S, Jung TY, Moon KS, Kim IY, Jeong YI, Jin SG, Pei J, Wen M, Jang WY (2012) Role of metallothionein 1E in the migration and invasion of human glioma cell lines. Int J Oncol 41:1305–1313

    CAS  PubMed  Google Scholar 

  88. Berghoff AS, Hainfellner JA, Marosi C, Preusser M (2015) Assessing MGMT methylation status and its current impact on treatment in glioblastoma. CNS Oncol 4:47–52

    Article  CAS  PubMed  Google Scholar 

  89. Meyer MA (2014) Highly expressed genes in human high grade gliomas: immunohistochemical analysis of data from the human protein atlas. Neurol Int 6:5348–5348

    PubMed  PubMed Central  Google Scholar 

  90. Sahab ZJ, Hall MD, Sung YM, Dakshanamurthy S, Ji Y, Kumar D, Byers SW (2011) Tumor suppressor RARRES1 interacts with cytoplasmic carboxypeptidase AGBL2 to regulate the alpha-tubulin tyrosination cycle. Cancer Res 71:1219–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kandoth C, McLellan MD, Vandin F, Ye K, Niu BF, Lu C, Xie MC, Zhang QY, McMichael JF, Wyczalkowski MA, et al. (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Suzuki K, Matsubara H (2011) Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011:1–7

    Google Scholar 

  93. Loh SN (2010) The missing zinc: p53 misfolding and cancer. Metallomics 2:442–449

    Article  CAS  PubMed  Google Scholar 

  94. Merino D, Malkin D (2014) p53 and hereditary cancer. Subcell Biochem 85:1–16

    Article  PubMed  Google Scholar 

  95. Krutilkova V, Trkova M, Fleitz J, Gregor V, Novotna K, Krepelova A, Sumerauer D, Kodet R, Siruckova S, Plevova P, et al. (2005) Identification of five new families strengthens the link between childhood choroid plexus carcinoma and germline TP53 mutations. Eur J Cancer 41:1597–1603

    Article  CAS  PubMed  Google Scholar 

  96. Azmi AS, Philip PA, Beck FWJ, Wang Z, Banerjee S, Wang S, Yang D, Sarkar FH, Mohammad RM (2011) MI-219-zinc combination: a new paradigm in MDM2 inhibitor-based therapy. Oncogene 30:117–126

    Article  CAS  PubMed  Google Scholar 

  97. Rasheed BKA, McLendon RE, Herndon JE, Friedman HS, Friedman AH, Bigner DD, Bigner SH (1994) Alterations of the tp53 gene in human gliomas. Cancer Res 54:1324–1330

    CAS  PubMed  Google Scholar 

  98. James CD, Carlbom E, Nordenskjold M, Collins VP, Cavenee WK (1989) Mitotic recombination of chromosome-17 in astrocytomas. Proc Natl Acad Sci U S A 86:2858–2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ohgaki H, Eibl RH, Schwab M, Reichel MB, Mariani L, Gehring M, Petersen I, Holl T, Wiestler OD, Kleihues P (1993) Mutations of the p53 tumor-suppressor gene in neoplasms of the human nervous-system. Mol Carcinog 8:74–80

    Article  CAS  PubMed  Google Scholar 

  100. Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP (2000) Deregulation of the p14(ARF)/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G(1)-S transition control gene abnormalities. Cancer Res 60:417–424

    CAS  PubMed  Google Scholar 

  101. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, et al. (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    Article  CAS  PubMed  Google Scholar 

  102. Artells E, Palacios O, Capdevila M, Atrian S (2014) In vivo-folded metal-metallothionein 3 complexes reveal the Cu-thionein rather than Zn-thionein character of this brain-specific mammalian metallothionein. FEBS J 281:1659–1678

    Article  CAS  PubMed  Google Scholar 

  103. Lee SJ, Park MH, Kim HJ, Koh JY (2010) Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 58:1186–1196

    Article  PubMed  Google Scholar 

  104. Bacolod MD, Fehdrau R, Johnson SP, Bullock NS, Bigner DD, Colvin M, Friedman HS (2009) BCNU-sequestration by metallothioneins may contribute to resistance in a medulloblastoma cell line. Cancer Chemother Pharmacol 63:753–758

    Article  CAS  PubMed  Google Scholar 

  105. Florianczyk B, Osuchowski J, Kaczmarczyk R, Trojanowski T, Stryjecka-Zimmer M (2003) Influence of metallothioneins on zinc and copper distribution in brain tumours. Folia Neuropathol 41:11–14

    CAS  PubMed  Google Scholar 

  106. Maier H, Jones C, Jasani B, Ofner D, Zelger B, Schmid KW, Budka H (1997) Metallothionein overexpression in human brain tumours. Acta Neuropathol 94:599–604

    Article  CAS  PubMed  Google Scholar 

  107. Peyre M, Commo F, Dantas-Barbosa C, Andreiuolo F, Puget S, Lacroix L, Drusch F, Scott V, Varlet P, Mauguen A, et al. (2010) Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis. PLoS One 5:1–15

    Article  CAS  Google Scholar 

  108. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chabottaux V, Noel A (2007) Breast cancer progression: insights into multifaceted matrix metalloproteinases. Clin Exp Metastasis 24:647–656

    Article  CAS  PubMed  Google Scholar 

  110. Xu YM, Zhong ZW, Yuan J, Zhang ZH, Wei QT, Song WZ, Chen HW (2013) Collaborative overexpression of matrix metalloproteinase-1 and vascular endothelial growth factor-C predicts adverse prognosis in patients with gliomas. Cancer Epidemiol 37:697–702

    Article  CAS  PubMed  Google Scholar 

  111. Ulasov I, Yi RY, Guo D, Sarvaiya P, Cobbs C (2014) The emerging role of MMP14 in brain tumorigenesis and future therapeutics. Biochim Biophys Acta-Rev Cancer 1846:113–120

    Article  CAS  Google Scholar 

  112. Wang L, Yuan J, Tu YY, Mao XG, He SM, Fu GQ, Zong JH, Zhang YS (2013) Co-expression of MMP-14 and MMP-19 predicts poor survival in human glioma. Clin Transl Oncol 15:139–145

    Article  CAS  PubMed  Google Scholar 

  113. Xie TX, Huang FJ, Aldape KD, Kang SH, Liu AG, Gershenwald JE, Xie KP, Sawaya R, Huang SY (2006) Activation of Stat3 in human melanoma promotes brain metastasis. Cancer Res 66:3188–3196

    Article  CAS  PubMed  Google Scholar 

  114. Stark AM, Anuszkiewicz B, Mentlein R, Yoneda T, Mehdorn HM, Held-Feindt J (2007) Differential expression of matrix metalloproteinases in brain- and bone-seeking clones of metastatic MDA-MB-231 breast cancer cells. J Neuro-Oncol 81:39–48

    Article  CAS  Google Scholar 

  115. Mendes O, Kim HT, Stoica G (2005) Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 22:237–246

    Article  CAS  PubMed  Google Scholar 

  116. Hu L, Zhang JQ, Zhu HB, Min J, Feng YM, Zhang HL (2010) Biological characteristics of a specific brain metastatic cell line derived from human lung adenocarcinoma. Med Oncol 27:708–714

    Article  PubMed  CAS  Google Scholar 

  117. Liu H, Kato Y, Erzinger SA, Kiriakova GM, Qian YZ, Palmieri D, Steeg PS, Price JE (2012) The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer 12:1–11

    Article  CAS  Google Scholar 

  118. Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82:52–55

    Article  CAS  PubMed  Google Scholar 

  119. Bodey B, Siegel SE, Kaiser HE (2000) Matrix metalloproteinase expression in childhood astrocytomas. Anticancer Res 20:3287–3292

    CAS  PubMed  Google Scholar 

  120. Snuderl M, Chi SN, De Santis SM, Stemmer-Rachamimov AO, Betensky RA, De Girolami U, Kieran MW (2008) Prognostic value of tumor microinvasion and metalloproteinases expression in intracranial pediatric ependymomas. J Neuropathol Exp Neurol 67:911–920

    Article  PubMed  PubMed Central  Google Scholar 

  121. Xia ZQ, Liu WQ, Li SD, Jia G, Zhang YQ, Li CD, Ma ZY, Tian JH, Gong J (2011) Expression of matrix metalloproteinase-9, type IV collagen and vascular endothelial growth factor in adamantinous craniopharyngioma. Neurochem Res 36:2346–2351

    Article  CAS  PubMed  Google Scholar 

  122. Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D'Orazi G (2009) Targeting hypoxia in cancer cells by restoring homeodomain interacting protein-kinase 2 and p53 activity and suppressing HIF-1 alpha. PLoS One 4:1–12

    Article  CAS  Google Scholar 

  123. Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R (2012) Mammalians’ metallothioneins and their properties and functions. Metallomics 4:739–750

    Article  CAS  PubMed  Google Scholar 

  124. Zhu J, Wan H, Xue CQ, Jiang T, Qian C, Zhang YQ (2013) Histone deacetylase 3 implicated in the pathogenesis of children glioma by promoting glioma cell proliferation and migration. Brain Res 1520:15–22

    Article  CAS  PubMed  Google Scholar 

  125. Campos B, Bermejo JL, Han L, Felsberg J, Ahmadi R, Grabe N, Reifenberger G, Unterberg A, Herold-Mende C (2011) Expression of nuclear receptor corepressors and class I histone deacetylases in astrocytic gliomas. Cancer Sci 102:387–392

    Article  CAS  PubMed  Google Scholar 

  126. Chen CH, Chang YJ, Ku MSB, Chung KT, Yang JT (2011) Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation. J Mol Med 89:303–315

    Article  CAS  PubMed  Google Scholar 

  127. Mirlohi S, Duncan SE, Harmon M, Case D, Lesser G, Dietrich AM (2015) Analysis of salivary fluid and chemosensory functions in patients treated for primary malignant brain tumors. Clin Oral Investig 19:127–137

    Article  PubMed  Google Scholar 

  128. el-Yazigi A, Al-Saleh I, Al-Mefty O (1986) Concentrations of zinc, iron, molybdenum, arsenic, and lithium in cerebrospinal fluid of patients with brain tumors. Clin Chem 32:2187–2190

    CAS  PubMed  Google Scholar 

  129. Palm R, Hallmans G (1982) Zinc concentrations in the cerebrospinal-fluid of normal adults and patients with neurological diseases. J Neurol Neurosurg Psychiatry 45:685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vyslouzilova L, Krizkova S, Anyz J, Hynek D, Hrabeta J, Kruseova J, Eckschlager T, Adam V, Stepankova O, Kizek R (2013) Use of brightness wavelet transformation for automated analysis of serum metallothioneins- and zinc-containing proteins by Western blots to subclassify childhood solid tumours. Electrophoresis 34:1637–1648

    Article  CAS  PubMed  Google Scholar 

  131. Krezel A, Maret WG (2008) Thionein/metallothionein control Zn(II) availability and the activity of enzymes. J Biol Inorg Chem 13:401–409

    Article  CAS  PubMed  Google Scholar 

  132. Cherian MG, Kang YJ (2006) Metallothionein and liver cell regeneration. Exp Biol Med 231:138–144

    CAS  Google Scholar 

  133. Feng W, Cai J, Pierce WM, Franklin RB, Maret W, Benz FW, Kang YJ (2005) Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts. Biochem Biophys Res Commun 332:853–858

    Article  CAS  PubMed  Google Scholar 

  134. Haga A, Nagase H, Kito H, Sato T (1996) Effect of metallothioneins on transformation of gelatinase A from human fibroblast WI-38 cells. Cancer Lett 105:175–180

    Article  CAS  PubMed  Google Scholar 

  135. Haga A, Nagase H, Kito H, Sato T (1996) Effect of metallothioneins on collagenolytic activity of tumor gelatinase B. Cancer Res Ther Control 5:17–22

    Google Scholar 

  136. Haga A, Nagase H, Kito H, Sato T (1996) Enhanced invasiveness of tumour cells after host exposure to heavy metals. Eur J Cancer 32A:2342–2347

    Article  CAS  PubMed  Google Scholar 

  137. Scaruffi P, Morandi F, Gallo F, Stigliani S, Parodi S, Moretti S, Bonassi S, Fardin P, Garaventa A, Zanazzo G, et al. (2012) Bone marrow of neuroblastoma patients shows downregulation of CXCL12 expression and presence of IFN signature. Pediatr Blood Cancer 59:44–51

    Article  PubMed  Google Scholar 

  138. Sandoval JA, Hoelz DJ, Woodruff HA, Powell RL, Jay CL, Grosfeld JL, HickeyD RJ, Malkas LH (2006) Novel peptides secreted from human neuroblastoma: useful clinical tools? J Pediatr Surg 41:245–251

    Article  PubMed  Google Scholar 

  139. Bautista F, Paci A, Minard-Colin V, Dufour C, Grill J, Lacroix L, Varlet P, Valteau-Couanet D, Geoerger B (2014) Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatr Blood Cancer 61:1101–1103

    Article  CAS  PubMed  Google Scholar 

  140. Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL, et al. (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−) p53(−/−) mice. Cancer Cell 6:229–240

    Article  CAS  PubMed  Google Scholar 

  141. Raju GP (2011) Arsenic: a potentially useful poison for hedgehog-driven cancers. J Clin Invest 121:14–16

    Article  CAS  PubMed  Google Scholar 

  142. Roosen N, Doz F, Yeomans KL, Dougherty DV, Rosenblum ML (1994) Effect of pharmacological doses of zinc on the therapeutic index of brain-tumor chemotherapy with carmustine. Cancer Chemother Pharmacol 34:385–392

    Article  CAS  PubMed  Google Scholar 

  143. Yamagata T, Nakamura Y, Yamagata Y, Nakanishi M, Matsunaga K, Nakanishi H, Nishimoto T, Minakata Y, Mune M, Yukawa S (2003) The pilot trial of the prevention of the increase in electrical taste thresholds by zinc containing fluid infusion during chemotherapy to treat primary lung cancer. J Exp Clin Cancer Res 22:557–563

    CAS  PubMed  Google Scholar 

  144. Yao YL, Ma J, Xue YX, Wang P, Li Z, Li ZQ, Hu Y, Shang XL, Liu YH (2015) MiR-449a exerts tumor-suppressive functions in human glioblastoma by targeting Myc-associated zinc-finger protein. Mol Oncol 9:640–656

    Article  CAS  PubMed  Google Scholar 

  145. Ma J, Yao YL, Wang P, Liu YH, Zhao LN, Li Z, Li ZQ, Xue YX (2014) MiR-181a regulates blood-tumor barrier permeability by targeting Kruppel-like factor 6. J Cereb Blood Flow Metab 34:1826–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhao LN, Wang P, Liu YH, Ma J, Xue YX (2015) miR-34c regulates the permeability of blood-tumor barrier via MAZ-mediated expression changes of ZO-1, occludin, and claudin-5. J Cell Physiol 230:716–731

    Article  CAS  PubMed  Google Scholar 

  147. Kennette W, Collins OM, Zalups RK, Koropatnick J (2005) Basal and zinc-induced metallothionein in resistance to cadmium, cisplatin, zinc, and tertButyl hydroperoxide: studies using MT knockout and antisense-downregulated MT in mammalian cells. Toxicol Sci 88:602–613

    Article  CAS  PubMed  Google Scholar 

  148. Anzellotti AI, Farrell NP (2008) Zinc metalloproteins as medicinal targets. Chem Soc Rev 37:1629–1651

    Article  CAS  PubMed  Google Scholar 

  149. Jin YL, Xiao WZ, Song TT, Feng GJ, Dai ZS (2016) Expression and prognostic significance of p53 in glioma patients: a meta-analysis. Neurochem Res 41:1723–1731

    Article  CAS  PubMed  Google Scholar 

  150. Tashakori M, Zhang Y, Xiong SB, You MJ, Lozano G (2016) p53 activity dominates that of p73 upon Mdm4 loss in development and tumorigenesis. Mol Cancer Res 14:56–65

    Article  CAS  PubMed  Google Scholar 

  151. Waye S, Naeem A, Choudhry MU, Parasido E, Tricoli L, Sivakumar A, Mikhaiel JP, Yenugonda V, Rodriguez OC, Karam SD, et al. (2015) The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging-Us 7:854–868

    Article  Google Scholar 

  152. Pei J, Park IH, Ryu HH, Li SY, Li CH, Lim SH, Wen M, Jang WY, Jung S (2015) Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model. Radiat Oncol 10

  153. Bartesaghi S, Graziano V, Galavotti S, Henriquez NV, Betts J, Saxena J, Deli A, Karlsson A, Martins LM, Capasso M, et al. (2015) Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells. Proc Natl Acad Sci U S A 112:1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cohen AL, Colman H (2015) Glioma biology and molecular markers. In: Parsa A (ed) Raizer J. Current understanding and treatment of gliomas Springer, Dordrecht, pp. 15–30

    Google Scholar 

  155. Checler F, da Costa CA (2014) p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 142:99–113

    Article  CAS  PubMed  Google Scholar 

  156. Narla S, Uppin MS, Saradhi MV, Sahu BP, Purohit AK, Sundaram C (2014) Assessment of expression of epidermal growth factor receptor and p53 in meningiomas. Neurol India 62:37–41

    Article  PubMed  Google Scholar 

  157. England B, Huang TG, Karsy M (2013) Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumor Biol 34:2063–2074

    Article  CAS  Google Scholar 

  158. Takahashi R, Giannini C, Sarkaria JN, Schroeder M, Rogers J, Mastroeni D, Scrable H (2013) p53 isoform profiling in glioblastoma and injured brain. Oncogene 32:3165–3174

    Article  CAS  PubMed  Google Scholar 

  159. Louis DN (1994) The p53 gene and protein in human brain-tumors. J Neuropathol Exp Neurol 53:11–21

    Article  CAS  PubMed  Google Scholar 

  160. Tomkova K, Tomka M, Zajac V (2008) Contribution of p53, p63, and p73 to the developmental diseases and cancer minireview. Neoplasma 55:177–181

    CAS  PubMed  Google Scholar 

  161. Fatt MP, Cancino GI, Miller FD, Kaplan DR (2014) p63 and p73 coordinate p53 function to determine the balance between survival, cell death, and senescence in adult neural precursor cells. Cell Death Differ 21:1546–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rushing EJ, Olsen C, Man YG (2008) Correlation of p63 immunoreactivity with tumor grade in meningiomas. Int J Surg Pathol 16:38–42

    Article  PubMed  Google Scholar 

  163. Antonelli A, Lenzi L, Nakagawara A, Osaki T, Chiaretti A, Aloe L (2007) Tumor suppressor proteins are differentially affected in human ependymoblastoma and medulloblastoma cells exposed to nerve growth factor. Cancer Investig 25:94–101

    Article  CAS  Google Scholar 

  164. Kamiya M, Nakazato Y (2002) The expression of p73, p21 and MDM2 proteins in gliomas. J Neuro-Oncol 59:143–149

    Article  Google Scholar 

  165. Loiseau H, Arsaut J, Demotes-Mainard J (1999) p73 gene transcripts in human brain tumors: overexpression and altered splicing in ependymomas. Neurosci Lett 263:173–176

    Article  CAS  PubMed  Google Scholar 

  166. Kirsch M, Zhu JJ, Black PM (1997) Analysis of the BRCA1 and BRCA2 genes in sporadic meningiomas. Genes Chromosomes & Cancer 20:53–59

    Article  CAS  Google Scholar 

  167. Bencokova Z, Pauron L, Devic C, Joubert A, Gastaldo J, Massart C, Balosso J, Foray N (2008) Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin. J Neuro-Oncol 86:13–21

    Article  CAS  Google Scholar 

  168. Dodgshun AJ, Sexton-Oates A, Saffery R, Sullivan MJ (2016) Biallelic FANCD1/BRCA2 mutations predisposing to glioblastoma multiforme with multiple oncogenic amplifications. Cancer Genetics 209:53–56

    Article  CAS  PubMed  Google Scholar 

  169. Lampert K, Machein U, Machein MR, Conca W, Peter HH, Volk B (1998) Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. Am J Pathol 153:429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nakagawa T, Kubota T, Kabuto M, Sato K, Kawano H, Hayakawa T, Okada Y (1994) Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain-tumors. J Neurosurg 81:69–77

    Article  CAS  PubMed  Google Scholar 

  171. Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PMA, Sutherland G, et al. (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yamamoto M, Mohanam S, Sawaya R, Fuller GN, Seiki M, Sato H, Gokaslan ZL, Liotta LA, Nicolson GL, Rao JS (1996) Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res 56:384–392

    CAS  PubMed  Google Scholar 

  173. Ulasov I, Yi RY, Guo D, Sarvaiya P, Cobbs C (2014) The emerging role of MMP14 in brain tumorigenesis and future therapeutics. Biochimica Et Biophysica Acta-Reviews on Cancer 1846:113–120

    Article  CAS  Google Scholar 

  174. Liu MF, Hu YY, Jin T, Xu K, Wang SH, Du GZ, Wu BL, Li LY, Xu LY, Li EM, et al. (2015) Matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex activity in human glioma samples predicts tumor presence and clinical prognosis. Dis Markers. doi:10.1155/2015/138974

    Google Scholar 

  175. Musumeci G, Magro G, Cardile V, Coco M, Marzagalli R, Castrogiovanni P, Imbesi R, Graziano ACE, Barone F, Di Rosa M, et al. (2015) Characterization of matrix metalloproteinase-2 and-9, ADAM-10 and N-cadherin expression in human glioblastoma multiforme. Cell Tissue Res 362:45–60

    Article  CAS  PubMed  Google Scholar 

  176. Li QB, Chen BS, Cai JQ, Sun Y, Wang GZ, Li YL, Li RY, Feng Y, Han B, Li JL, et al. (2016) Comparative analysis of matrix metalloproteinase family members reveals that MMP9 predicts survival and response to temozolomide in patients with primary glioblastoma. PLoS One 11

  177. Sakr M, Takino T, Sabit H, Nakada M, Li ZC, Sato H (2016) miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase. Gene 587:155–162

    Article  CAS  PubMed  Google Scholar 

  178. Chung HJ, Choi YE, Kim ES, Han YH, Park MJ, Bae IH (2015) miR-29b attenuates tumorigenicity and stemness maintenance in human glioblastoma multiforme by directly targeting BCL2L2. Oncotarget 6:18429–18444

    Article  PubMed  PubMed Central  Google Scholar 

  179. Somasundaram A, Ardanowski N, Opalak CF, Fillmore HL, Chidambaram A, Broaddus WC (2014) Wilms tumor 1 gene, CD97, and the emerging biogenetic profile of glioblastoma. Neurosurg Focus 37

  180. Kijima N, Hashimoto N, Chiba Y, Fujimoto Y, Sugiyama H, Yoshimine T (2016) Functional roles of Wilms’ tumor 1 (WT1) in malignant brain tumors. Wilms Tumor DOI:261–272

  181. Dennis SL, Manji SSM, Carrington DP, Scarcella DL, Ashley DM, Smith PJ, Algar EM (2002) Expression and mutation analysis of the Wilms’ tumor 1 gene in human neural tumors. Int J Cancer 97:713–715

    Article  CAS  PubMed  Google Scholar 

  182. Mehrian-Shai R, Yalon M, Simon AJ, Eyal E, Pismenyuk T, Moshe I, Constantini S, Toren A (2015) High metallothionein predicts poor survival in glioblastoma multiforme. BMC Med Genet 8

  183. Hiura T, Khalid H, Yamashita H, Tokunaga Y, Yasunaga A, Shibata S (1998) Immunohistochemical analysis of metallothionein in astrocytic tumors in relation to tumor grade, proliferative potential, and survival. Cancer 83:2361–2369

    Article  CAS  PubMed  Google Scholar 

  184. Florianczyk B, Osuchowski J, Kaczmarczyk R, Staroslawska E, Trojanowski T (2005) Distribution of metallothioneins in the brain neoplastic cells. Folia Neuropathol 43:91–96

    CAS  PubMed  Google Scholar 

  185. Dasari VR, Kaur K, Velpula KK, Gujrati M, Fassett D, Klopfenstein JD, Dinh DH, Rao JS (2010) Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway. PLoS One 5

  186. Zhang JH, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, Orisme W, Punchihewa C, Parker M, Qaddoumi I, et al. (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602-+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rodriguez FJ, Lim KS, Bowers D, Eberhart CG (2013) Pathological and molecular advances in pediatric low-grade astrocytoma. In: Abbas AK, Galli SJ, Howley PM (eds) Annual review of pathology: mechanisms of disease, Vol 8 Annual Reviews, Palo Alto, pp. 361–379

  188. Liu ZG, Liu YG, Li LL, Xu ZK, Bi BB, Wang YY, Li JY (2014) MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumor Biol 35:10177–10184

    Article  CAS  Google Scholar 

  189. Verreault M, Schmitt C, Goldwirt L, Pelton K, Haidar S, Levasseur C, Guehennec J, Knoff D, Labussiere M, Marie Y, et al. (2016) Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2-amplified and TP53 wild-type glioblastomas. Clin Cancer Res 22:1185–1196

    Article  CAS  PubMed  Google Scholar 

  190. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP (1993) Amplification and overexpression of the MDM2 gene in a subset of human-malignant gliomas without p53 mutations. Cancer Res 53:2736–2739

    CAS  PubMed  Google Scholar 

  191. Suzuki SO, Iwaki T (2000) Amplification and overexpression of mdm2 gene in ependymomas. Mod Pathol 13:548–553

    Article  CAS  PubMed  Google Scholar 

  192. Markert JM, Fuller CM, Gillespie GY, Bubien JK, McLean LA, Hong RL, Lee K, Gullans SR, Mapstone TB, Benos DJ (2001) Differential gene expression profiling in human brain tumors. Physiol Genomics 5:21–33

    CAS  PubMed  Google Scholar 

  193. Kraus JA, Felsberg J, Tonn JC, Reifenberger G, Pietsch T (2002) Molecular genetic analysis of the TP53, PTEN, CDKN2A, EGFR, CDK4 and MDM2 tumour-associated genes in supratentorial primitive neuroectodermal tumours and glioblastomas of childhood. Neuropathol Appl Neurobiol 28:325–333

    Article  CAS  PubMed  Google Scholar 

  194. Ranuncolo SM, Varela M, Morandi A, Lastiri J, Christiansen S, Joffe EBD, Pallotta MG, Puricelli L (2004) Prognostic value of Mdm2, p53 and p16 in patients with astrocytomas. J Neuro-Oncol 68:113–121

    Article  Google Scholar 

  195. Kafadar A, Kucukhuseyin O, Turan S, Yenilmez EN, Tunoglu S, Zeybek U, Kaynar MY, Kemerdere R, Yaylim I (2015) Distribution and effects of CDKN2 p16 540 C > G and 580 C > T, and MDM2 SNP309 T > G polymorphisms in patients with primary brain tumors. Anticancer Res 35:3933–3942

    CAS  PubMed  Google Scholar 

  196. Wang CL, Wang JY, Liu ZY, Ma XM, Wang XW, Jin H, Zhang XP, Fu D, Hou LJ, Lu YC (2014) Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 35:1500–1509

    Article  CAS  PubMed  Google Scholar 

  197. Sampieri K, Mencarelli MA, Epistolato MC, Toti P, Lazzi S, Bruttini M, De Francesco S, Longo I, Meloni I, Mari F, et al. (2008) Genomic differences between retinoma and retinoblastoma. Acta Oncol 47:1483–1492

    Article  CAS  PubMed  Google Scholar 

  198. Rao SK, Edwards J, Joshi AD, Siu IM, Riggins GJ (2010) A survey of glioblastoma genomic amplifications and deletions. J Neuro-Oncol 96:169–179

    Article  CAS  Google Scholar 

  199. Perry C, Sklan EH, Soreq H (2004) CREB regulates AChE-R-induced proliferation of human glioblastoma cells. Neoplasia 6:279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mantamadiotis T, Papalexis N, Dworkin S (2012) CREB signalling in neural stem/progenitor cells: recent developments and the implications for brain tumour biology. BioEssays 34:293–300

    Article  CAS  PubMed  Google Scholar 

  201. Daniel P, Filiz G, Brown DV, Hollande F, Gonzales M, D'Abaco G, Papalexis N, Phillips WA, Malaterre J, Ramsay RG et al (2014) Selective CREB-dependent cyclin expression mediated by the PI3K and MAPK pathways supports glioma cell proliferation. Oncogenesis 3: 1–10

  202. Zhang JQ, Yao QH, Kuang YQ, Ma Y, Yang LB, Huang HD, Cheng JM, Yang T, Liu EY, Liang L, et al. (2014) Prognostic value of coexistence of abnormal expression of micro-RNA-200b and cyclic adenosine monophosphate-responsive element-binding protein 1 in human astrocytoma. Hum Pathol 45:2154–2161

    Article  CAS  PubMed  Google Scholar 

  203. Ajeawung NF, Maltais R, Jones C, Poirier D, Kamnasaran D (2013) Viability screen on pediatric low grade glioma cell lines unveils a novel anti-cancer drug of the steroid biosynthesis inhibitor family. Cancer Lett 330:96–105

    Article  CAS  PubMed  Google Scholar 

  204. Zhao RJ, Zhang XL, Chu SG, Zhang M, Kong LF, Wang Y (2016) Clinicopathologic and neuroradiologic studies of papillary glioneuronal tumors. Acta Neurochir 158:695–702

    Article  PubMed  Google Scholar 

  205. Lin T, Wang M, Jiang HS, Liu EZ (2015) The expression of P53, MGMT and EGFR in brain glioma and clinical significance. J Biol Regul Homeost Agents 29:143–149

    CAS  PubMed  Google Scholar 

  206. Oka H, Utsuki S, Tanizaki Y, Hagiwara H, Miyajima Y, Sato K, Kusumi M, Kijima C, Fujii K (2013) Clinicopathological features of human brainstem gliomas. Brain Tumor Pathology 30:1–7

    Article  PubMed  Google Scholar 

  207. Chin L, Meyerson M, Aldape K, Bigner D, Mikkelsen T, VandenBerg S, Kahn A, Penny R, Ferguson ML, Gerhard DS, et al. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  CAS  Google Scholar 

  208. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, et al. (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197

    Article  PubMed  Google Scholar 

  209. Silber JR, Mueller BA, Ewers TG, Berger MS (1993) Comparison of O6-methylguanine-DNA methyltransferase activity in brain-tumors and adjacent normal brain. Cancer Res 53:3416–3420

    CAS  PubMed  Google Scholar 

  210. Kolodziej MA, Weischer C, Reinges MHT, Uhl E, Weigand MA, Schwarm FP, Schanzer A, Acker T, Quint K, Uhle F, et al. (2016) NDRG2 and NDRG4 expression is altered in glioblastoma and influences survival in patients with MGMT-methylated tumors. Anticancer Res 36:887–897

    CAS  PubMed  Google Scholar 

  211. Horing E, Harter PN, Seznec J, Schittenhelm J, Buhring HJ, Bhattacharyya S, von Hattingen E, Zachskorn C, Mittelbronn M, Naumann U (2012) The “go or grow” potential of gliomas is linked to the neuropeptide processing enzyme carboxypeptidase E and mediated by metabolic stress. Acta Neuropathol 124:83–97

    Article  PubMed  CAS  Google Scholar 

  212. Denis CJ, Lambeir AM (2013) The potential of carboxypeptidase M as a therapeutic target in cancer. Expert Opin Ther Targets 17:265–279

    Article  CAS  PubMed  Google Scholar 

  213. Verbovsek U, Motaln H, Rotter A, Atai NA, Gruden K, Van Noorden CJF, Lah TT (2014) Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma Plos One:9

  214. Haapasalo JA, Nordfors KM, Hilvo M, Rantala IJ, Soini Y, Parkkila AK, Pastorekova S, Pastorek J, Parkkila SM, Haapasalo HK (2006) Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res 12:473–477

    Article  CAS  PubMed  Google Scholar 

  215. Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KSC, Chapman JD, Eckelman WC, Fyles AW, Giaccia AJ, et al. (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82:699–757

    Article  CAS  PubMed  Google Scholar 

  216. Said HM, Supuran CT, Hageman C, Staab A, Polat B, Katzer A, Scozzafava A, Anacker J, Flentje M, Vordermark D (2010) Modulation of carbonic anhydrase 9 (CA9) in human brain cancer. Curr Pharm Des 16:3288–3299

    Article  CAS  PubMed  Google Scholar 

  217. Nordfors K, Haapasalo J, Korja M, Niemela A, Laine J, Parkkila AK, Pastorekova S, Pastorek J, Waheed A, Sly WS et al (2010) The tumour-associated carbonic anhydrases CA II, CA IX and CA XII in a group of medulloblastomas and supratentorial primitive neuroectodermal tumours: an association of CA IX with poor prognosis. Bmc Cancer 10: 1–10

  218. Proescholdt MA, Merrill MJ, Stoerr EM, Lohmeier A, Pohl F, Brawanski A (2012) Function of carbonic anhydrase IX in glioblastoma multiforme. Neuro-Oncology 14:1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Li XN, Shu Q, Su JMF, Perlaky L, Blaney SM, Lau CC (2005) Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 4:1912–1922

    Article  CAS  PubMed  Google Scholar 

  220. Lee SJ, Lindsey S, Graves B, Yoo S, Olson JM, Langhans SA (2013) Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma Plos One:8

  221. Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T, Kiss J, Selt F, Konrad C, Lodrini M et al (2015) Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathologica Communications 3: 1–12

  222. Kesari S (2011) Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments. Semin Oncol 38:S2–S10

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II. The financial support from the project AZV CR 15-28334A and from the Ministry of Health of the Czech Republic for conceptual development of research organization 00064203 (University Hospital Motol, Prague, Czech Republic) is highly acknowledged.

Author contributions

J.H., T.E., and M.S. wrote and discussed the chapter “The roles of zinc ions and their transporter proteins in cell and tissue development” and conceived the study. Z.H. prepared and critically reviewed “Zinc ions and zinc containing proteins as possible therapeutic targets”. S.K. and V.A. prepared “Zinc, zinc-containing biomolecules and childhood brain tumors” and “Utilization of zinc and zinc containing proteins for cancer diagnostics” and conceived the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Adam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrabeta, J., Eckschlager, T., Stiborova, M. et al. Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med 94, 1199–1215 (2016). https://doi.org/10.1007/s00109-016-1454-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1454-8

Keywords

Navigation