Skip to main content

Advertisement

Log in

Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin

  • Lab. Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose Anti-glioma strategies are generally based on trials involving rodent models whose choice remains based on proliferative capacity and availability. Recently, our group obtained the most protracted survival of rats bearing F98 gliomas by combining synchrotron X-rays and intracerebral cisplatin injection (Biston et al., Cancer Res, 64:2317–2323, 2004). The response to such treatment was suggested to be dependent on BRCA1, a tumour suppressor known to be involved in the response to radiation and cisplatin. In order to verify the impact of BRCA1 functionality upon success of anti-glioma trials, radiobiological features and BRCA1-dependent stress signalling were investigated in the most extensively used rodent glioma models. Methods Cell death pathways, cell cycle arrests, DNA repair and stress signalling were evaluated in response to radiation and cisplatin in C6, 9L and F98 models. Results Rodent glioma models showed a large spectrum of cellular radiation response. Surprisingly, BRCA1 was found to be functionally impaired in C6 and F98 favouring genomic instability, tumour heterogeneity and tolerance of unrepaired DNA damage. Significance Our findings strengthened the importance of the choice of the glioma model on genetic and radiobiological bases, inasmuch as all these rat glioma models are induced by nitrosourea-mediated mutagenesis that may favour specific gene mutations. Particularly, BRCA1 status may condition the response to anti-glioma treatments. Furthermore, since BRCA1 acts as a tumour suppressor in a number of malignancies, our findings raise also the question of the implication of BRCA1 in brain tumours formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331

    Article  PubMed  Google Scholar 

  2. Lesniak MS, Brem H (2004) Targeted therapy for brain tumours. Nat Rev Drug Discov 3:499–508

    Article  PubMed  CAS  Google Scholar 

  3. Bredel M (2001) Anticancer drug resistance in primary human brain tumors. Brain Res Brain Res Rev 35:161–204

    Article  PubMed  CAS  Google Scholar 

  4. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  PubMed  CAS  Google Scholar 

  5. Marot D, Opolon P, Brailly-Tabard S, Elie N, Randrianarison V, Connault E, Foray N, Feunteun J, Perricaudet M (2006) The tumor suppressor activity induced by adenovirus-mediated BRCA1 overexpression is not restricted to breast cancers. Gene Ther 13:235–244

    Article  PubMed  CAS  Google Scholar 

  6. Holland EC (2001) Brain tumor animal models: importance and progress. Curr Opin Oncol 13:143–147

    Article  PubMed  CAS  Google Scholar 

  7. Schlegel J, Piontek G, Kersting M, Schuermann M, Kappler R, Scherthan H, Weghorst C, Buzard G, Mennel H (1999) The p16/Cdkn2a/Ink4a gene is frequently deleted in nitrosourea-induced rat glial tumors. Pathobiology 67:202–206

    Article  PubMed  CAS  Google Scholar 

  8. Asai A, Miyagi Y, Sugiyama A, Gamanuma M, Hong SH, Takamoto S, Nomura K, Matsutani M, Takakura K, Kuchino Y (1994) Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. Implication of the tumor suppressor genes for gene therapy. J Neurooncol 19:259–268

    Article  PubMed  CAS  Google Scholar 

  9. Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    Article  PubMed  CAS  Google Scholar 

  10. Senatus PB, Li Y, Mandigo C, Nichols G, Moise G, Mao Y, Brown MD, Anderson RC, Parsa AT, Brandt-Rauf PW, Bruce JN, Fine RL (2006) Restoration of p53 function for selective Fas-mediated apoptosis in human and rat glioma cells in vitro and in vivo by a p53 COOH-terminal peptide. Mol Cancer Ther 5:20–28

    Article  PubMed  CAS  Google Scholar 

  11. Ko L, Koestner A, Wechsler W (1980) Morphological characterization of nitrosourea-induced glioma cell lines and clones. Acta Neuropathol (Berl) 51:23–31

    Article  CAS  Google Scholar 

  12. Zhu Y, Parada LF (2002) The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2:616–626

    Article  PubMed  CAS  Google Scholar 

  13. Corde S, Balosso J, Elleaume H, Renier M, Joubert A, Biston MC, Adam JF, Charvet AM, Brochard T, Le Bas JF, Esteve F, Foray N (2003) Synchrotron photoactivation of cisplatin elicits an extra number of DNA breaks that stimulate RAD51-mediated repair pathways. Cancer Res 63:3221–3227

    PubMed  CAS  Google Scholar 

  14. Biston MC, Joubert A, Adam JF, Elleaume H, Bohic S, Charvet AM, Esteve F, Foray N, Balosso J (2004) Cure of Fisher rats bearing radioresistant F98 glioma treated with cis-platinum and irradiated with monochromatic synchrotron X-rays. Cancer Res 64:2317–2323

    Article  PubMed  CAS  Google Scholar 

  15. Foray N, Priestley A, Alsbeih G, Badie C, Capulas EP, Arlett CF, Malaise EP (1997) Hypersensitivity of ataxia telangiectasia fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int J Radiat Biol 72:271–283

    Article  PubMed  CAS  Google Scholar 

  16. Foray N, Marot D, Gabriel A, Randrianarison V, Carr AM, Perricaudet M, Ashworth A, Jeggo P (2003) A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. Embo J 22:2860–2871

    Article  PubMed  CAS  Google Scholar 

  17. Barth RF (1998) Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol 36:91–102

    Article  PubMed  CAS  Google Scholar 

  18. Joubert A, Foray N (2006) Repair of radiation-induced DNA double-strand breaks in human cells: history, progress and controversies (Chapter 10). In: Landseer BR (ed) New Research on DNA Repair. Nova Science, Hauppauge NY

    Google Scholar 

  19. Foray N, Randrianarison V, Marot D, Perricaudet M, Lenoir G, Feunteun J (1999) Gamma-rays-induced death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene 18:7334–7342

    Article  PubMed  CAS  Google Scholar 

  20. Lee SA, Dritschilo A, Jung M (2001) Role of ATM in oxidative stress-mediated c-Jun phosphorylation in response to ionizing radiation and CdCl2. J Biol Chem 276:11783–11790

    Article  PubMed  CAS  Google Scholar 

  21. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100:5057–5062

    Article  PubMed  CAS  Google Scholar 

  22. Udayakumar D, Bladen CL, Hudson FZ, Dynan WS (2003) Distinct pathways of nonhomologous end joining that are differentially regulated by DNA-dependent protein kinase-mediated phosphorylation. J Biol Chem 278:41631–41635

    Article  PubMed  CAS  Google Scholar 

  23. Chavaudra N, Bourhis J, Foray N (2004) Quantified relationship between cellular radiosensitivity, DNA repair defects and chromatin relaxation: a study of 19 human tumour cell lines from different origin. Radiother Oncol 73:373–382

    Article  PubMed  CAS  Google Scholar 

  24. Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275

    Article  PubMed  CAS  Google Scholar 

  25. Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, Wang YR, Hu R, Lopez-Guajardo CC, Brose HL, Porter KI, Leonard RA, Hitt AA, Schommer SL, Elegbede AF, Gould MN (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21:645–651

    Article  PubMed  CAS  Google Scholar 

  26. Ueki K, Nishikawa R, Nakazato Y, Hirose T, Hirato J, Funada N, Fujimaki T, Hojo S, Kubo O, Ide T, Usui M, Ochiai C, Ito S, Takahashi H, Mukasa A, Asai A, Kirino T (2002) Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clin Cancer Res 8:196–201

    PubMed  CAS  Google Scholar 

  27. Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, Sikic BI (2005) High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Res 65:4088–4096

    Article  PubMed  CAS  Google Scholar 

  28. Ruffner H, Jiang W, Craig AG, Hunter T, Verma IM (1999) BRCA1 is phosphorylated at serine 1497 in vivo at a cyclin-dependent kinase 2 phosphorylation site. Mol Cell Biol 19:4843–4854

    PubMed  CAS  Google Scholar 

  29. Deans AJ, Khanna KK, McNees CJ, Mercurio C, Heierhorst J, McArthur GA (2006) Cyclin-dependent kinase 2 functions in normal DNA repair and is a therapeutic target in BRCA1-deficient cancers. Cancer Res 66:8219–8226

    Article  PubMed  CAS  Google Scholar 

  30. Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, Weinstein A, Nelson JS, Tsukada Y (1983) Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint radiation therapy oncology group and eastern cooperative oncology group study. Cancer 52:997–1007

    Article  PubMed  CAS  Google Scholar 

  31. Wolff JE, Trilling T, Molenkamp G, Egeler RM, Jurgens H (1999) Chemosensitivity of glioma cells in vitro: a meta analysis. J Cancer Res Clin Oncol 125:481–486

    Article  PubMed  CAS  Google Scholar 

  32. Jenkin RD, Boesel C, Ertel I, Evans A, Hittle R, Ortega J, Sposto R, Wara W, Wilson C, Anderson J et al (1987) Brain-stem tumors in childhood: a prospective randomized trial of irradiation with and without adjuvant CCNU, VCR, and prednisone. A report of the childrens cancer study group. J Neurosurg 66:227–233

    Article  PubMed  CAS  Google Scholar 

  33. Sheleg SV, Korotkevich EA, Zhavrid EA, Muravskaya GV, Smeyanovich AF, Shanko YG, Yurkshtovich TL, Bychkovsky PB, Belyaev SA (2002) Local chemotherapy with cisplatin-depot for glioblastoma multiforme. J Neurooncol 60:53–59

    Article  PubMed  Google Scholar 

  34. Fehlauer F, Muench M, Rades D, Stalpers LJ, Leenstra S, van der Valk P, Slotman B, Smid EJ, Sminia P (2005) Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration. J Cancer Res Clin Oncol 131:723–732

    Article  PubMed  CAS  Google Scholar 

  35. Taghian A, Ramsay J, Allalunis-Turner J, Budach W, Gioioso D, Pardo F, Okunieff P, Bleehen N, Urtasun R, Suit H (1993) Intrinsic radiation sensitivity may not be the major determinant of the poor clinical outcome of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 25:243–249

    PubMed  CAS  Google Scholar 

  36. Taghian A, Suit H, Pardo F, Gioioso D, Tomkinson K, DuBois W, Gerweck L (1992) In vitro intrinsic radiation sensitivity of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 23:55–62

    PubMed  CAS  Google Scholar 

  37. Foray N, Marot D, Randrianarison V, Venezia ND, Picard D, Perricaudet M, Favaudon V, Jeggo P (2002) Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation. Mol Cell Biol 22:4020–4032

    Article  PubMed  CAS  Google Scholar 

  38. Rosen EM, Fan S, Isaacs C (2005) BRCA1 in hormonal carcinogenesis: basic and clinical research. Endocr Relat Cancer 12:533–548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. E. P Malaise, V. Favaudon and D. Marot for fruitful discussions. The human glioma cell lines were kindly provided by F. Berger and L. Pelletier. Z. B. is a Ph.D. fellowship of Roche-France. A. J. was supported by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France). This work was also supported by the Association Pour la Recherche sur l’Ataxie-Telangiectasie (APRAT), Association pour la Recherche contre le Cancer (ARC), the Electricité de France (Comité de Radioprotection), the ETOILE Project (Région Rhône-Alpes and Lyon University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Foray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bencokova, Z., Pauron, L., Devic, C. et al. Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin. J Neurooncol 86, 13–21 (2008). https://doi.org/10.1007/s11060-007-9433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9433-0

Keywords

Navigation