Skip to main content
Log in

Thionein/metallothionein control Zn(II) availability and the activity of enzymes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Fundamental issues in zinc biology are how proteins control the concentrations of free Zn(II) ions and how tightly they interact with them. Since, basically, the Zn(II) stability constants of only two cytosolic zinc enzymes, carbonic anhydrase and superoxide dismutase, have been reported, the affinity for Zn(II) of another zinc enzyme, sorbitol dehydrogenase (SDH), was determined. Its log K is 11.2 ± 0.1, which is similar to the log K values of carbonic anhydrase and superoxide dismutase despite considerable differences in the coordination environments of Zn(II) in these enzymes. Protein tyrosine phosphatase 1B (PTP 1B), on the other hand, is not classified as a zinc enzyme but is strongly inhibited by Zn(II), with log K = 7.8 ± 0.1. In order to test whether or not metallothionein (MT) can serve as a source for Zn(II) ions, it was used to control free Zn(II) ion concentrations. MT makes Zn(II) available for both PTP 1B and the apoform of SDH. However, whether or not Zn(II) ions are indeed available for interaction with these enzymes depends on the thionein (T) to MT ratio and the redox poise. At ratios [T/(MT + T) = 0.08–0.31] prevailing in tissues and cells, picomolar concentrations of free Zn(II) are available from MT for reconstituting apoenzymes with Zn(II). Under conditions of decreased ratios, nanomolar concentrations of free Zn(II) become available and affect enzymes that are not zinc metalloenzymes. The match between the Zn(II) buffering capacity of MT and the Zn(II) affinity of proteins suggests a function of MT in controlling cellular Zn(II) availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Free Zn(II) has been referred to as “freely available” or “rapidly exchangeable” Zn(II) that is thermodynamically and kinetically available to chelating agents that are introduced into cells. It is likely not devoid of small ligands, the nature of which is unknown, though glutathione and histidine are likely candidates.

References

  1. Chester JK (1997) In: O’Dell BL, Sunde RA (eds) Handbook of nutritionally essential mineral elements. Dekker, New York, pp 185–230

    Google Scholar 

  2. Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) ACS Chem Biol 1:103–111

    Article  PubMed  CAS  Google Scholar 

  3. Krężel A, Maret W (2006) J Biol Inorg Chem 11:1049–1062

    Article  PubMed  CAS  Google Scholar 

  4. Eide DJ (2006) Biochim Biophys Acta 1763:711–722

    Article  PubMed  CAS  Google Scholar 

  5. Laity JH, Andrews GK (2007) Arch Biochem Biophys 463:201–210

    Article  PubMed  CAS  Google Scholar 

  6. Krężel A, Maret W (2007) Biochem J 402:551–558

    Article  PubMed  CAS  Google Scholar 

  7. Krężel A, Maret W (2007) J Am Chem Soc 129:10911–10921

    Article  PubMed  CAS  Google Scholar 

  8. Kiefer LL, Krebs JF, Paterno SA, Fierke CA (1993) Biochemistry 32:9896–9900

    Article  PubMed  CAS  Google Scholar 

  9. Hirose J, Yamada M, Hayakawa C, Nagao H, Noji M, Kidani Y (1984) Biochem Int 8:401–408

    PubMed  CAS  Google Scholar 

  10. Maret W (1989) Biochemistry 28:9944–9949

    Article  PubMed  CAS  Google Scholar 

  11. Smith PK, Krohn RJ, Hermanson GT, Mallia AK, Gartner FH, Provenzano M, Fujimoto EK, Goeke NM, Olson GJ, Klenk DC (1985) Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  12. Krężel A, Latajka R, Bujacz GD, Bal W (2003) Inorg Chem 42:1994–2003

    Article  PubMed  CAS  Google Scholar 

  13. Krężel A, Leśniak W, Jeżowska-Bojczuk M, Młynarz P, Brasuń J, Kozłowski H, Bal W (2001) J Inorg Biochem 84:77–88

    Article  Google Scholar 

  14. Hong S-H, Toyama M, Maret W, Murooka Y (2001) Protein Expr Purif 21:243–250

    Article  PubMed  CAS  Google Scholar 

  15. Pedersen AO, Jacobsen J (1980) Eur J Biochem 106:291–295

    Article  PubMed  CAS  Google Scholar 

  16. Irving H, Miles MG, Pettit LD (1967) Anal Chim Acta 38:475–488

    Article  CAS  Google Scholar 

  17. Gans P, Sabatini A, Vacca A (1985) J Chem Soc Dalton Trans 1195–1199

  18. Gerlach U, Hiby W (1974) In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 569–573

    Google Scholar 

  19. Maret W, Auld DS (1988) Biochemistry 27:1622–1628

    Article  PubMed  CAS  Google Scholar 

  20. Nishikata M, Suzuki K, Yoshimura Y, Deyama Y, Matsumoto A (1999) Biochem J 343:385–391

    Article  PubMed  CAS  Google Scholar 

  21. Jeffery J, Chesters J, Mills C, Sadler PJ, Jörnvall H (1984) EMBO J 3:357–360

    PubMed  CAS  Google Scholar 

  22. Pauly TA, Ekstrom JL, Beebe DA, Chrunyk B, Cunningham D, Griffor M, Kamath A, Lee SE, Madura R, Mcguire D, Subashi T, Wasilko D, Watts P, Mylari BL, Oates PJ, Adams PD, Rath VL (2003) Structure 11:1071–1085

    Article  PubMed  CAS  Google Scholar 

  23. Frausto da Silva JJR, Calado JG (1963) Rev Port Quim 5:121–128

    Google Scholar 

  24. Holloway JH, Reilley CN (1960) Anal Chem 32:249–256

    Article  CAS  Google Scholar 

  25. Maret W (2004) Biochemistry 43:3301–3309

    Article  PubMed  CAS  Google Scholar 

  26. Brautigan DL, Bornstein P, Gallis B (1981) J Biol Chem 256:6519–6522

    PubMed  CAS  Google Scholar 

  27. Maret W, Jacob C, Vallee BL, Fischer EH (1999) Proc Natl Acad Sci USA 96:1936–1940

    Article  PubMed  CAS  Google Scholar 

  28. Haase H, Maret W (2003) Exp Cell Res 291:289–298

    Article  PubMed  CAS  Google Scholar 

  29. Cohen S, Wilson I (1966) Biochemistry 5:904–909

    Article  PubMed  CAS  Google Scholar 

  30. Schwarzenbach G, Anderegg G, Schneider W, Senn H (1955) Helv Chim Acta 38:1147–1170

    Article  CAS  Google Scholar 

  31. Maret W, Yetman CA, Jiang L-J (2001) Chem Biol Interact 130–132:891–901

    Article  PubMed  Google Scholar 

  32. Hogstrand C, Verbost PM, Wendelaar Bonga SE (1999) Toxicology 133:139–145

    Article  PubMed  CAS  Google Scholar 

  33. Costello LC, Liu Y, Franklin RB, Kennedy MC (1997) J Biol Chem 272:28875–28881

    Article  PubMed  CAS  Google Scholar 

  34. Frey D, Braun O, Briand C, Vašák M, Grutter MG (2006) Structure 14:901–911

    Article  PubMed  CAS  Google Scholar 

  35. Knipp M, Charnock JM, Garner CD, Vašák M (2001) J Biol Chem 276:40449–40456

    Article  PubMed  CAS  Google Scholar 

  36. Ray WJ Jr (1967) J Biol Chem 242:3737–3744

    PubMed  CAS  Google Scholar 

  37. Peck EJ Jr, Ray WJ Jr (1971) J Biol Chem 246:1160–1167

    PubMed  Google Scholar 

  38. Simons TJB (1991) J Membr Biol 123:63–71

    Article  PubMed  CAS  Google Scholar 

  39. Jiang L-J, Maret W, Vallee BL (1998) Proc Natl Acad Sci USA 95:3483–3488

    Article  PubMed  CAS  Google Scholar 

  40. Yang Y, Maret W, Vallee BL (2001) Proc Natl Acad Sci USA 98:5556–5559

    Article  PubMed  CAS  Google Scholar 

  41. Kägi JHR (1993) In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Biological roles and medical implications. Birkhäuser, Basel, pp 29–55

    Google Scholar 

  42. Krężel A, Hao Q, Maret W (2007) Arch Biochem Biophys 463:188–200

    Article  PubMed  CAS  Google Scholar 

  43. Hao Q, Maret W (2006) FEBS J 273:4300–4310

    Article  PubMed  CAS  Google Scholar 

  44. Auld DS (2001) Biometals 14:271–313

    Article  PubMed  CAS  Google Scholar 

  45. Maret W (2004) In: Messerschmidt A, Bode W, Cygler M (eds) Handbook of metalloproteins, vol 3. Wiley, Chichester, pp 432–441

    Google Scholar 

  46. Kim PW, Sun Z-YJ, Blacklow SC, Wagner G, Eck MJ (2003) Science 301:1725–1728

    Article  PubMed  CAS  Google Scholar 

  47. Romin J, Lilie H, Egerer-Sieber C, Bauer F, Sticht H, Muller YA (2007) J Mol Biol 365:1417–1428

    Article  CAS  Google Scholar 

  48. Thompson RB (2005) Curr Opin Chem Biol 9:526–532

    Article  PubMed  CAS  Google Scholar 

  49. Maret W, Larsen KS, Vallee BL (1997) Proc Natl Acad Sci USA 94:2233–2237

    Article  PubMed  CAS  Google Scholar 

  50. Eren E, Gonzales-Guerrero M, Kaufman BM, Arguello JM (2007) Biochemistry 46:7754–7764

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Wojciech Bal from the Institute of Biochemistry and Biophysics at the Polish Academy of Sciences in Warsaw for help with potentiometric measurements, V.M. Sadagopa Ramanujam, Associate Professor in the Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, for metal analyses by atomic absorption spectrophotometry (supported by the Human Nutrition Research Facility), and Marinel Ammenheuser for editorial assistance. This work was supported in part by the National Institutes of Health grant GM 065388 to W.M. and by a sponsored research agreement with Neurobiotex Inc, Galveston, TX, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Maret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krężel, A., Maret, W. Thionein/metallothionein control Zn(II) availability and the activity of enzymes. J Biol Inorg Chem 13, 401–409 (2008). https://doi.org/10.1007/s00775-007-0330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0330-y

Keywords

Navigation