Skip to main content

Advertisement

Log in

Astrocyte-Derived Sonic Hedgehog Contributes to Angiogenesis in Brain Microvascular Endothelial Cells via RhoA/ROCK Pathway After Oxygen–Glucose Deprivation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The human adult brain possesses intriguing plasticity, including neurogenesis and angiogenesis, which may be mediated by the activated sonic hedgehog (Shh). By employing a coculture system, brain microvascular endothelial cells (BMECs) cocultured with astrocytes, which were incubated under oxygen–glucose deprivation (OGD) condition, we tested the hypothesis that Shh secreted by OGD-activated astrocytes promotes cerebral angiogenesis following ischemia. The results of this study demonstrated that Shh was mainly secreted by astrocytes and the secretion was significantly upregulated after OGD. The proliferation, migration, and tube formation of BMECs cocultured with astrocytes after OGD were significantly enhanced, but cyclopamine (a Shh antagonist) or 5E1 (an antibody of Shh) reversed the change. Furthermore, silencing Ras homolog gene family, member A (RhoA) of BMECs by RNAi and blocking Rho-dependent kinase (ROCK) by Y27632, a specific antagonist of ROCK, suppressed the upregulation of proliferation, migration, and tube formation of BMECs after OGD. These findings suggested that Shh derived from activated astrocytes stimulated RhoA/ROCK pathway in BMECs after OGD, which might be involved in angiogenesis in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liepert J et al (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31(6):1210–6

    Article  PubMed  CAS  Google Scholar 

  2. Rossini PM et al (2003) Post-stroke plastic reorganisation in the adult brain. Lancet Neurol 2(8):493–502

    Article  PubMed  Google Scholar 

  3. Jin K et al (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24(1):171–89

    Article  PubMed  CAS  Google Scholar 

  4. Arvidsson A et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–70

    Article  PubMed  CAS  Google Scholar 

  5. Spadafora R et al (2010) Altered fate of subventricular zone progenitor cells and reduced neurogenesis following neonatal stroke. Dev Neurosci 32(2):101–13

    Article  PubMed  CAS  Google Scholar 

  6. Krupinski J et al (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25(9):1794–8

    Article  PubMed  CAS  Google Scholar 

  7. Brea D et al (2009) Reorganisation of the cerebral vasculature following ischaemia. Rev Neurol 49(12):645–54

    PubMed  CAS  Google Scholar 

  8. Sa-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45(2):327–47

    Article  PubMed  CAS  Google Scholar 

  9. Arai K et al (2009) Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J 276(17):4644–52

    Article  PubMed  CAS  Google Scholar 

  10. Hirota S et al (2011) The astrocyte-expressed integrin alphavbeta8 governs blood vessel sprouting in the developing retina. Development 138(23):5157–66

    Article  PubMed  CAS  Google Scholar 

  11. Stenzel D et al (2011) Integrin-dependent and -independent functions of astrocytic fibronectin in retinal angiogenesis. Development 138(20):4451–63

    Article  PubMed  CAS  Google Scholar 

  12. Scott A et al (2010) Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One 5(7):e11863

    Article  PubMed  Google Scholar 

  13. Weidemann A et al (2010) Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Glia 58(10):1177–85

    PubMed  Google Scholar 

  14. Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8(19):1083–6

    Article  PubMed  CAS  Google Scholar 

  15. Matise MP, Wang H (2011) Sonic hedgehog signaling in the developing CNS where it has been and where it is going. Curr Top Dev Biol 97:75–117

    Article  PubMed  CAS  Google Scholar 

  16. Palladino M et al (2011) Pleiotropic beneficial effects of sonic hedgehog gene therapy in an experimental model of peripheral limb ischemia. Mol Ther 19(4):658–66

    Article  PubMed  CAS  Google Scholar 

  17. Kusano KF et al (2004) Sonic hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic neuropathy. Arterioscler Thromb Vasc Biol 24(11):2102–7

    Article  PubMed  CAS  Google Scholar 

  18. Asai J et al (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113(20):2413–24

    Article  PubMed  CAS  Google Scholar 

  19. Pola R et al (2001) The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7(6):706–11

    Article  PubMed  CAS  Google Scholar 

  20. Renault MA et al (2010) Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol 49(3):490–8

    Article  PubMed  CAS  Google Scholar 

  21. Chinchilla P et al (2010) Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9(3):570–79

    Article  PubMed  CAS  Google Scholar 

  22. Polizio AH et al (2011) Heterotrimeric Gi proteins link hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. J Biol Chem 286(22):19589–96

    Article  PubMed  CAS  Google Scholar 

  23. Kasai K et al (2004) The G12 family of heterotrimeric G proteins and Rho GTPase mediate sonic hedgehog signalling. Genes Cells 9(1):49–58

    Article  PubMed  CAS  Google Scholar 

  24. Dai RL et al (2011) Sonic hedgehog protects cortical neurons against oxidative stress. Neurochem Res 36(1):67–75

    Article  PubMed  CAS  Google Scholar 

  25. Xia YP et al (2012) The protective effect of sonic hedgehog is mediated by the propidium iodide 3-kinase/AKT/Bcl-2 pathway in cultured rat astrocytes under oxidative stress. Neuroscience 209:1–11

    Article  PubMed  CAS  Google Scholar 

  26. Diglio CA et al (1982) Primary culture of rat cerebral microvascular endothelial cells. Isolation, growth, and characterization. Lab Investig 46(6):554–63

    PubMed  CAS  Google Scholar 

  27. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902

    Article  PubMed  CAS  Google Scholar 

  28. Kim JA et al (2003) Astrocyte regulation of human brain capillary endothelial fibrinolysis. Thromb Res 112(3):159–65

    Article  PubMed  CAS  Google Scholar 

  29. Sims JR et al (2009) Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation. Stroke 40(11):3618–26

    Article  PubMed  CAS  Google Scholar 

  30. Amankulor NM et al (2009) Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29(33):10299–308

    Article  PubMed  CAS  Google Scholar 

  31. Bijlsma MF et al (2009) Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med 13(8B):2053–60

    Article  PubMed  Google Scholar 

  32. Kang W, Hebert JM (2011) Signaling pathways in reactive astrocytes, a genetic perspective. Mol Neurobiol 43(3):147–54

    Article  PubMed  CAS  Google Scholar 

  33. Al-Ayadhi LY (2012) Relationship between sonic hedgehog protein, brain-derived neurotrophic factor and oxidative stress in autism spectrum disorders. Neurochem Res 37(2):394–400

    Article  PubMed  CAS  Google Scholar 

  34. Zhang C, Harder DR (2002) Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic acid. Stroke 33(12):2957–64

    Article  PubMed  CAS  Google Scholar 

  35. van der Meel R et al (2011) The VEGF/Rho GTPase signalling pathway: a promising target for anti-angiogenic/anti-invasion therapy. Drug Discov Today 16(5–6):219–28

    Article  PubMed  Google Scholar 

  36. Bryan BA et al (2010) RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 24(9):3186–95

    Article  PubMed  CAS  Google Scholar 

  37. Washida N et al (2011) Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis. Nephrol Dial Transplant 26(9):2770–9

    Article  PubMed  CAS  Google Scholar 

  38. Croft DR et al (2004) Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 64(24):8994–9001

    Article  PubMed  CAS  Google Scholar 

  39. Nakabayashi H, Shimizu K (2011) HA1077, a Rho kinase inhibitor, suppresses glioma-induced angiogenesis by targeting the Rho-ROCK and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signal pathways. Cancer Sci 102(2):393–9

    Article  PubMed  CAS  Google Scholar 

  40. Kanda S et al (2003) Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase. J Biol Chem 278(10):8244–9

    Article  PubMed  CAS  Google Scholar 

  41. Krishnan V et al (1997) Mediation of sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase. Science 278(5345):1947–50

    Article  PubMed  CAS  Google Scholar 

  42. Chang H et al (2010) Activation of Erk by sonic hedgehog independent of canonical hedgehog signalling. Int J Biochem Cell Biol 42(9):1462–71

    Article  PubMed  CAS  Google Scholar 

  43. Ahmed RP et al (2010) Sonic hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PLoS One 5(1):e8576

    Article  PubMed  Google Scholar 

  44. Polizio, A.H., et al., Sonic hedgehog activates the GTPases Rac1 and RhoA in a Gli-independent manner through coupling of smoothened to Gi proteins. Sci Signal, 2011. 4(200):pt7.

    Google Scholar 

  45. Lee HS et al (2009) Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS J 276(17):4622–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 81070938 from the Program of National Natural Science Foundation of China (to BH), grant 81101905 from the Program of National Natural Science Foundation of China (to LM), New Century Excellent Talents in University NCET-10-0406 (to BH), and the Fundamental Research Funds for the Central Universities, HUST no. 2010JC028 (to BH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu.

Additional information

Quan-Wei He and Yuan-Peng Xia contributed equally to this project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, QW., Xia, YP., Chen, SC. et al. Astrocyte-Derived Sonic Hedgehog Contributes to Angiogenesis in Brain Microvascular Endothelial Cells via RhoA/ROCK Pathway After Oxygen–Glucose Deprivation. Mol Neurobiol 47, 976–987 (2013). https://doi.org/10.1007/s12035-013-8396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8396-8

Keywords

Navigation