Skip to main content

Advertisement

Log in

Expression and Prognostic Significance of p53 in Glioma Patients: A Meta-analysis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 14 October 2016

Abstract

Glioma is a brain tumor deriving from the neoplastic glial cells or neuroglia. Due to its resistance to anticancer drugs and different disease progress of individuals, patients with high-grade glioma are difficult to completely cure, leading to a poor prognosis and low overall survival. Therefore, there is an urgent need to look for prognostic and diagnostic indicators that can predict glioma grades. P53 is one of the widely studied biomarkers in human glioma. The purpose of this study was to comprehensively evaluate the significance of p53 expression in glioma grades and overall survival. We searched commonly used electronic databases to retrieve related articles of p53 expression in glioma. Overall, a total of 21 studies including 1322 glioma patients were finally screened out. We observed that the frequency of p53 immuno-positivity was higher in high-grade patients than that in low-grade category (63.8 vs. 41.6 %), and our statistic analysis indicated that p53 expression was associated with pathological grade of glioma (OR 2.93, 95 % CI 1.87–4.60, P < 0.00001). This significant correction was also found in 1-, 3- and 5-year overall survival. However, no positive relationship was found between age, sex, tumor size and p53 expression in patients with glioma. In conclusion, our results suggested that p53 immunohistochemical expression might have an effective usefulness in predicting the prognosis in patients with glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hofer S, Rushing E, Preusser M, Marosi C (2014) Molecular biology of high-grade gliomas: What should the clinician know? Chin J Cancer 33:4–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen Y, Gutmann D (2014) The molecular and cell biology of pediatric low-grade gliomas. Oncogene 33:2019–2026

    Article  CAS  PubMed  Google Scholar 

  3. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16(7):896–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Butowski NA, Berger M (2012) Malignant gliomas: Part I: epidemiology, risk factors, prognostic factors, and imaging findings. Contemp Neurosurg 34:1–5

    Google Scholar 

  5. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chowdhary SA, Ryken T, Newton HB (2015) Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neurooncol 122(7):367–382

    Article  PubMed  PubMed Central  Google Scholar 

  7. Noble M, Dietrich J (2004) The complex identity of brain tumors: emerging concerns regarding origin, diversity and plasticity. Trends Neurosci 27:148–154

    Article  CAS  PubMed  Google Scholar 

  8. Lv S, Dai C, Liu Y, Shi R, Tang Z, Han M, Bian R, Sun B, Wang R (2015) The impact of survivin on prognosis and clinicopathology of glioma patients: a systematic meta-analysis. Mol Neurobiol 51:1462–1467

    Article  CAS  Google Scholar 

  9. Yang X, Lv S, Liu Y, Li D, Shi R, Tang Z, Fan J, Xu Z (2015) The clinical utility of matrix metalloproteinase nine in evaluating pathological grade and prognosis of glioma patients: a meta-analysis. Mol Neurobiol 52:38–44

    Article  CAS  PubMed  Google Scholar 

  10. Nieder C, Petersen S, Petersen C, Thames H (2000) The challenge of p53 as prognostic and predictive factor in gliomas. Cancer Treat Rev 26:67–73

    Article  CAS  PubMed  Google Scholar 

  11. Misiewicz-Krzeminska I, Sarasquete ME, Quwaider D, Krzeminski P, Ticona FV, Paíno T, Delgado M, Aires A, Ocio E, García-Sanz R (2012) Restoration of miR-214 expression reduces growth of myeloma cells through a positive regulation of P53 and inhibition of DNA replication. Haematologica:haematol. 2012.070011

  12. Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, Ramirez FG, Rizzuto R, Di Virgilio F, Zito E (2015) p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci 112:1779–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. e Silva RDF, dos Santos NFG, Pereira VRA, Amaral A (2014) Simultaneous analysis of P53 protein expression and cell proliferation in irradiated human lymphocytes by flow cytometry. Dose-Response 12:110–120

    Article  Google Scholar 

  14. Hwang C-I, Matoso A, Corney DC, Flesken-Nikitin A, Körner S, Wang W, Boccaccio C, Thorgeirsson SS, Comoglio PM, Hermeking H (2011) Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci 108:14240–14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He Z-Y, Shi C-B, Wen H, Li F-L, Wang B-L, Wang J (2011) Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Investig 29:208–213

    Article  CAS  Google Scholar 

  16. Kularatne B, Capitanio A, Arora R, Jones P, Lopes A, Paterson J, Kristeleit R (2013) Abstract C32: PTEN and p53 expression in endometrial cancer correlated with clinicopathological phenotype. Mol Cancer Ther 12:C32–C32

    Article  Google Scholar 

  17. Yamamoto M, Hosoda M, Nakano K, Jia S, Hatanaka KC, Takakuwa E, Hatanaka Y, Matsuno Y, Yamashita H (2014) p53 accumulation is a strong predictor of recurrence in estrogen receptor-positive breast cancer patients treated with aromatase inhibitors. Cancer Sci 105:81–88

    Article  CAS  PubMed  Google Scholar 

  18. Sivars L, Näsman A, Tertipis N, Vlastos A, Ramqvist T, Dalianis T, Munck-Wikland E, Nordemar S (2014) Human papillomavirus and p53 expression in cancer of unknown primary in the head and neck region in relation to clinical outcome. Cancer Med 3:376–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reinhardt HC, Schumacher B (2012) The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28:128–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pollack IF, Finkelstein SD, Woods J, Burnham J, Holmes EJ, Hamilton RL, Yates AJ, Boyett JM, Finlay JL, Sposto R (2002) Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med 346:420–427

    Article  CAS  PubMed  Google Scholar 

  21. Mokhtari K, Paris S, Aguirre-Cruz L, Privat N, Criniere E, Marie Y, Hauw JJ, Kujas M, Rowitch D, Hoang-Xuan K, Delattre JY, Sanson M (2005) Olig2 expression, GFAP, p53 and 1p loss analysis contribute to glioma subclassification. Neuropathol Appl Neurobiol 31:62–69

    Article  CAS  PubMed  Google Scholar 

  22. Newcomb EW, Cohen H, Lee SR, Bhalla SK, Bloom J, Hayes RL, Miller DC (1998) Survival of patients with glioblastoma multiforme is not influenced by altered expression of P16, P53, EGFR, MDM2 or Bcl-2 genes. Brain Pathol 8:655–667

    Article  CAS  PubMed  Google Scholar 

  23. Antonelli M, Buttarelli FR, Arcella A, Nobusawa S, Donofrio V, Oghaki H, Giangaspero F (2010) Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas. J Neurooncol 99:209–215

    Article  CAS  PubMed  Google Scholar 

  24. Hu X, Miao W, Zou Y, Zhang W, Zhang Y, Liu H (2013) Expression of p53, epidermal growth factor receptor, Ki-67 and O6-methylguanine-DNA methyltransferase in human gliomas. Oncol Lett 6:130–134

    PubMed  PubMed Central  Google Scholar 

  25. Xiao Q, Huang S (2004) PDGFRa, MMP-2, MMP-9, p53 expression is associated with the infiltrative nature and prognosis of glioma. Sichuan University, Chengdu

    Google Scholar 

  26. Hong L, Li Q, Chen G, Lin S (2005) Expression and relationship of RGS16 and p53 in human glioma. Chin J Neurosurg Dis Res 4:248–251

    CAS  Google Scholar 

  27. Kong X, Cao H, Cui W, Liang G (2005) Relevant research of MDM2 and p53 expression in human gliomas. J Jining Med Coll 29:27–28

    Google Scholar 

  28. Lin Y, Huang S, Liao D (2005) Expression of DNA repair enzyme MGMT in human brain gliomas and its biological implication. J Mod Clin Med Bioeng 11:187–201

    CAS  Google Scholar 

  29. Wang J, Guan X, Zhan X, Luo B (2005) Expression of PCNA, Ki-67 and p53 in human glioma. Chin J Cancer Prev Treat 12:753–755

    CAS  Google Scholar 

  30. Ma L, Xu G, Song L, Zhang J (2006) The study of Survivin and p53 expression in glioma. J Basic Clin Oncol 19:4–6

    Google Scholar 

  31. Wang J, Z-c YUAN, Shi Y (2007) Expression of p53, Ki67, VEGF and MMP-9 in glioma and their clinical significances [J]. J Jiangsu Univ (Medicine Edition) 3:012

    Google Scholar 

  32. Wu Y, Dong L, Gu X, Yu B (2007) Expression of β-catenin, p53 and Ki67 in the human glioma tissue tested by tissue chip. J Mod Oncol 15:1396–1399

    CAS  Google Scholar 

  33. Wei Y (2007) Correlation analysis of p53 and MDM2 expression in human brain glioma. Shanxi Medical University, Taiyuan

    Google Scholar 

  34. Cheng A, Wan F, Jin Z, Wang J, Xu X (2008) Nitrite oxide and inducible nitric oxide synthase were regulated by polysaccharides isolated from Glycyrrhiza uralensis Fisch. J Ethnopharmacol 118:59–64

    Article  CAS  PubMed  Google Scholar 

  35. Long X, Xu H, Zeng Y, You C (2009) Expression of p14ARF, p53 and p21WAF1 protein in gliomas and their significance. J Mod Oncol 17:2090–2093

    CAS  Google Scholar 

  36. Zhang J (2010) Study of relationship between CatB and p53 expression and malignancy in human glioma. Kunming Medical College, Kunming

    Google Scholar 

  37. Ji L, Zhou F (2011) The correlation of the expression of MGMT and p53 in human brain gliiomas with tumor grade or prognosis. Chin J Clin Neurosci 19:588–593

    Google Scholar 

  38. M-y PAN, Z-m FANG, Y-b KANG, Z-p LIN (2011) Expression of p33 ~ (ING1b) and p53 gene in brain glioma and their relations. J Shanxi Med Univ 8:014

    Google Scholar 

  39. Gu W, Pei H (2012) The relationship between Ki-67, p53, PCNA and the prognosis of gliomas. Chin J Mod Drug Appl 6:16–18

    Google Scholar 

  40. Zhou K, Zhang M, Liu B (2012) Expression of p53 and Ki67 in the gliomas and its clinical significance. Pract J Cancer 27:572–573

    Google Scholar 

  41. Zeng R, Deng J, Xia L, Gong M (2013) Expression of p53, p15 and VEGF in human brain glioma and their relationship with malignace degree. J Xi’an Jiaotong Univ 34:365–370

    Google Scholar 

  42. He J, Feng H, Wang T, Zhang X (2014) Expression and clinical significance of SPARC, p53 and VEGF in the gliomas. J Shanxi Med Univ 45:1140–1143

    CAS  Google Scholar 

  43. Liu L, Li W, Xia H, Luan X (2014) Expression and clinical significance of MGMT, p53 and Ki-67 in XINJIANG gliomas. Xinjiang Med J 44:10–13

    Google Scholar 

  44. Luo Z, Zhou C, Li P (2014) The expression of p53, MGMT and EGFR in glioma and their clinical significance. Sichuan Med J 35:551–554

    CAS  Google Scholar 

  45. Levidou G, El-Habr E, Saetta AA, Bamias C, Katsougiannis K, Patsouris E, Korkolopoulou P (2010) P53 immunoexpression as a prognostic marker for human astrocytomas: a meta-analysis and review of the literature. J Neurooncol 100:363–371

    Article  CAS  PubMed  Google Scholar 

  46. Case AJ, Domann FE (2014) Absence of manganese superoxide dismutase delays p53-induced tumor formation. Redox Biol 2:220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim SH, Dass CR (2011) p53-targeted cancer pharmacotherapy: move towards small molecule compounds. J Pharm Pharmacol 63:603–610

    Article  CAS  PubMed  Google Scholar 

  48. England B, Huang T, Karsy M (2013) Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumor Biol 34:2063–2074

    Article  CAS  Google Scholar 

  49. Gu C, Banasavadi-Siddegowda YK, Joshi K, Nakamura Y, Kurt H, Gupta S, Nakano I (2013) Tumor-Specific activation of the C-JUN/MELK pathway regulates glioma stem cell growth in a p53-dependent manner. Stem Cells 31:870–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gillet E, Alentorn A, Doukouré B, Mundwiller E, van Thuij H, Reijneveld JC, Medina JAM, Liou A, Marie Y, Mokhtari K (2014) TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. J Neurooncol 118:131–139

    CAS  PubMed  Google Scholar 

  51. Ganigi P, Santosh V, Anandh B, Chandramouli B, Sastry KV (2004) Expression of p53, EGFR, pRb and bcl-2 proteins in pediatric glioblastoma multiforme: a study of 54 patients. Pediatr Neurosurg 41:292–299

    Article  Google Scholar 

  52. Arshad H, Ahmad Z, Hasan SH (2010) Gliomas: correlation of histologic grade, Ki67 and p53 expression with patient survival. Asian Pac J Cancer Prev 11:1637–1640

    PubMed  Google Scholar 

  53. Ranuncolo SM, Varela M, Morandi A, Lastiri J, Christiansen S, de Kier Joffé EB, Pallotta MG, Puricelli L (2004) Prognostic value of Mdm2, p53 and p16 in patients with astrocytomas. J Neurooncol 68:113–121

    Article  PubMed  Google Scholar 

  54. Chen L, Zhang R, Li P, Liu Y, Qin K, Z-q Fa, Y-j Liu, Y-q Ke, X-d Jiang (2013) P53-induced microRNA-107 inhibits proliferation of glioma cells and down-regulates the expression of CDK6 and Notch-2. Neurosci Lett 534:327–332

    Article  CAS  PubMed  Google Scholar 

  55. Liang C, Guo E, Lu S, Wang S, Kang C, Chang L, Liu L, Zhang G, Wu Z, Zhao Z (2012) Over-expression of Wild-type p53-induced phosphatase 1 confers poor prognosis of patients with gliomas. Brain Res 1444:65–75

    Article  CAS  PubMed  Google Scholar 

  56. Birner P, Toumangelova-Uzeir K, Natchev S, Guentchev M (2011) Expression of mutated isocitrate dehydrogenase-1 in gliomas is associated with p53 and EGFR expression. Folia Neuropathol 49:88–93

    PubMed  Google Scholar 

  57. Janouskova H, Maglott A, Leger DY, Bossert C, Noulet F, Guerin E, Guenot D, Pinel S, Chastagner P, Plenat F (2012) Integrin α5β1 plays a critical role in resistance to temozolomide by interfering with the p53 pathway in high-grade glioma. Cancer Res 72:3463–3470

    Article  CAS  PubMed  Google Scholar 

  58. Malkoun N, Chargari C, Forest F, Fotso M-J, Cartier L, Auberdiac P, Thorin J, Pacaut C, Peoc’h M, Nuti C (2012) Prolonged temozolomide for treatment of glioblastoma: preliminary clinical results and prognostic value of p53 overexpression. J Neurooncol 106:127–133

    Article  CAS  PubMed  Google Scholar 

  59. Blough MD, Beauchamp DC, Westgate MR, Kelly JJ, Cairncross JG (2011) Effect of aberrant p53 function on temozolomide sensitivity of glioma cell lines and brain tumor initiating cells from glioblastoma. J Neurooncol 102:1–7

    Article  CAS  PubMed  Google Scholar 

  60. Lee SW, Kim H-K, Lee N-H, Yi H-Y, Kim H-S, Hong SH, Hong Y-K, Joe YA (2015) The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells. Cancer Lett 360:195–204

    Article  CAS  PubMed  Google Scholar 

  61. Kim S-S, Rait A, Kim E, Pirollo KF, Chang EH (2015) A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine 11(2):301–311

    CAS  PubMed  Google Scholar 

  62. Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Meyel DJ, Ramsay DA, Casson AG, Keeney M, Chambers AF, Cairncross JG (1994) p53 mutation, expression, and DNA ploidy in evolving gliomas: evidence for two pathways of progression. J Natl Cancer Inst 86:1011–1017

    Article  CAS  PubMed  Google Scholar 

  64. Malmer BS, Feychting M, Lönn S, Lindström S, Grönberg H, Ahlbom A, Schwartzbaum J, Auvinen A, Collatz-Christensen H, Johansen C (2007) Genetic variation in p53 and ATM haplotypes and risk of glioma and meningioma. J Neurooncol 82:229–237

    Article  CAS  PubMed  Google Scholar 

  65. Viotti J, Duplan E, Caillava C, Condat J, Goiran T, Giordano C, Marie Y, Idbaih A, Delattre J, Honnorat J (2014) Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene 33:1764–1775

    Article  CAS  PubMed  Google Scholar 

  66. He F, Xia Y, Liu H, Li J, Wang C (2013) P53 codon 72 Arg/Pro polymorphism and glioma risk: an updated meta-analysis. Tumor Biol 34:3121–3130

    Article  CAS  Google Scholar 

  67. Cage TA, Mueller S, Haas-Kogan D, Gupta N (2012) High-grade gliomas in children. Neurosurg Clin N Am 23:515–523

    Article  PubMed  Google Scholar 

  68. Yao W, Qin X, Qi B, Lu J, Guo L, Liu F, Liu S, Zhao B (2014) Association of p53 expression with prognosis in patients with esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7:7158

    PubMed  PubMed Central  Google Scholar 

  69. Gunia S, Kakies C, Erbersdobler A, Hakenberg OW, Koch S, May M (2012) Expression of p53, p21 and cyclin D1 in penile cancer: p53 predicts poor prognosis. J Clin Pathol 65:232–236

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Shanghai Pudong Science and Technology Commission, China. (Grant No.: PKJ2014-Y23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhensheng Dai.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Weizhong Xiao and Tingting Song are co-first authors of this article.

An erratum to this article is available at http://dx.doi.org/10.1007/s11064-016-2083-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Xiao, W., Song, T. et al. Expression and Prognostic Significance of p53 in Glioma Patients: A Meta-analysis. Neurochem Res 41, 1723–1731 (2016). https://doi.org/10.1007/s11064-016-1888-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1888-y

Keywords

Navigation