Skip to main content
Log in

Metal ions in biological catalysis: from enzyme databases to general principles

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We analysed the roles and distribution of metal ions in enzymatic catalysis using available public databases and our new resource Metal-MACiE (http://www.ebi.ac.uk/thornton-srv/databases/Metal_MACiE/home.html). In Metal-MACiE, a database of metal-based reaction mechanisms, 116 entries covering 21% of the metal-dependent enzymes and 70% of the types of enzyme-catalysed chemical transformations are annotated according to metal function. We used Metal-MACiE to assess the functions performed by metals in biological catalysis and the relative frequencies of different metals in different roles, which can be related to their individual chemical properties and availability in the environment. The overall picture emerging from the overview of Metal-MACiE is that redox-inert metal ions are used in enzymes to stabilize negative charges and to activate substrates by virtue of their Lewis acid properties, whereas redox-active metal ions can be used both as Lewis acids and as redox centres. Magnesium and zinc are by far the most common ions of the first type, while calcium is relatively less used. Magnesium, however, is most often bound to phosphate groups of substrates and interacts with the enzyme only transiently, whereas the other metals are stably bound to the enzyme. The most common metal of the second type is iron, which is prevalent in the catalysis of redox reactions, followed by manganese, cobalt, molybdenum, copper and nickel. The control of the reactivity of redox-active metal ions may involve their association with organic cofactors to form stable units. This occurs sometimes for iron and nickel, and quite often for cobalt and molybdenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bertini I, Gray HB, Stiefel EI, Valentine JS (2006) Biological inorganic chemistry. University Science Books, Sausalito

    Google Scholar 

  2. Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, New York

    Google Scholar 

  3. Bertini I, Sigel A, Sigel H (2001) Handbook on metalloproteins. Marcel Dekker, New York

    Google Scholar 

  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  5. Rawlings ND, Morton FR, Barrett AJ (2006) Nucleic Acids Res 34:D270–D272

    Article  PubMed  CAS  Google Scholar 

  6. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) Nucleic Acids Res 32:D431–D433

    Article  PubMed  CAS  Google Scholar 

  7. Holliday GL, Almonacid DE, Bartlett GJ, O’Boyle NM, Torrance JW, Murray-Rust P, Mitchell JB, Thornton JM (2007) Nucleic Acids Res 35:D515–D520

    Article  PubMed  CAS  Google Scholar 

  8. Joyce AR, Palsson BO (2006) Nat Rev Mol Cell Biol 7:198–210

    Article  PubMed  CAS  Google Scholar 

  9. Bertini I, Cavallaro G (2008) J Biol Inorg Chem 13:3–14

    Article  PubMed  CAS  Google Scholar 

  10. Martin AC (2004) Bioinformatics 20:986–988

    Article  PubMed  CAS  Google Scholar 

  11. Blom NS, Tetreault S, Coulombe R, Sygusch J (1996) Nat Struct Biol 3:856–862

    Article  PubMed  CAS  Google Scholar 

  12. Blom N, Sygusch J (1997) Nat Struct Biol 4:36–39

    Article  PubMed  CAS  Google Scholar 

  13. Resnick SM, Lee K, Gibson DT (1996) J Ind Microbiol Biot 17:438–457

    Article  CAS  Google Scholar 

  14. Kanehisa M, Goto S (2000) Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  15. McDonald AG, Boyce S, Moss GP, Dixon HB, Tipton KF (2007) BMC Biochem 8:14

    Article  PubMed  Google Scholar 

  16. Blaszczyk J, Shi G, Yan H, Ji X (2000) Structure 8:1049–1058

    Article  PubMed  CAS  Google Scholar 

  17. Li Y, Blaszczyk J, Wu Y, Shi G, Ji X, Yan H (2005) Biochemistry 44:8590–8599

    Article  PubMed  CAS  Google Scholar 

  18. Carpenter EP, Hawkins AR, Frost JW, Brown KA (1998) Nature 394:299–302

    Article  PubMed  CAS  Google Scholar 

  19. Christianson DW, Fierke CA (1996) Acc Chem Res 29:331–339

    Article  CAS  Google Scholar 

  20. Stec B, Holtz KM, Kantrowitz ER (2000) J Mol Biol 299:1303–1311

    Article  PubMed  CAS  Google Scholar 

  21. Zalatan JG, Catrina I, Mitchell R, Grzyska PK, O’Brien PJ, Herschlag D, Hengge AC (2007) J Am Chem Soc 129:9789–9798

    Article  PubMed  CAS  Google Scholar 

  22. Lesburg CA, Zhai G, Cane DE, Christianson DW (1997) Science 277:1820–1824

    Article  PubMed  CAS  Google Scholar 

  23. Essen LO, Perisic O, Katan M, Wu Y, Roberts MF, Williams RL (1997) Biochemistry 36:1704–1718

    Article  PubMed  CAS  Google Scholar 

  24. Tainer JA, Getzoff ED, Richardson JS, Richardson DC (1983) Nature 306:284–287

    Article  PubMed  CAS  Google Scholar 

  25. Hart JP, Balbirnie MM, Ogihara NL, Nersissian AM, Weiss MS, Valentine JS, Eisenberg D (1999) Biochemistry 38:2167–2178

    Article  PubMed  CAS  Google Scholar 

  26. Scrutton NS, Basran J, Wilson EK, Chohan KK, Jang MH, Sutcliffe MJ, Hille R (1999) Biochem Soc Trans 27:196–201

    PubMed  CAS  Google Scholar 

  27. Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J, Baldwin JE (1997) Nature 387:827–830

    Article  PubMed  CAS  Google Scholar 

  28. Fitzpatrick PF (1999) Annu Rev Biochem 68:355–381

    Article  PubMed  CAS  Google Scholar 

  29. Goldblatt C, Lenton TM, Watson AJ (2006) Nature 443:683–686

    Article  PubMed  CAS  Google Scholar 

  30. Luthi D, Gunzel D, McGuigan JA (1999) Exp Physiol 84:231–252

    Article  PubMed  CAS  Google Scholar 

  31. Maguire ME, Cowan JA (2002) Biometals 15:203–210

    Article  PubMed  CAS  Google Scholar 

  32. Linse S, Forsén S (1995) Adv Second Messenger Phosphoprotein Res 30:89–151

    PubMed  CAS  Google Scholar 

  33. Carafoli E (2002) Proc Natl Acad Sci USA 99:1115–1122

    Article  PubMed  CAS  Google Scholar 

  34. Jaiswal JK (2001) J Biosci 26:357–363

    Article  PubMed  CAS  Google Scholar 

  35. Dreyer MK, Schulz GE (1996) J Mol Biol 259:458–466

    Article  PubMed  CAS  Google Scholar 

  36. Vallee BL, Auld DS (1990) Proc Natl Acad Sci USA 87:220–224

    Article  PubMed  CAS  Google Scholar 

  37. Hao B, Gong W, Rajagopalan PT, Zhou Y, Pei D, Chan MK (1999) Biochemistry 38:4712–4719

    Article  PubMed  CAS  Google Scholar 

  38. Christianson DW, Lipscomb WN (1989) Acc Chem Res 22:62–69

    Article  CAS  Google Scholar 

  39. Matthews BW (1988) Acc Chem Res 21:333–340

    Article  CAS  Google Scholar 

  40. Bertini I, Calderone V, Fragai M, Luchinat C, Maletta M, Yeo KJ (2006) Angew Chem Int Ed 45:7952–7955

    Article  CAS  Google Scholar 

  41. Aubert SD, Li Y, Raushel FM (2004) Biochemistry 43:5707–5715

    Article  PubMed  CAS  Google Scholar 

  42. Chen G, Edwards T, D’souza VM, Holz RC (1997) Biochemistry 36:4278–4286

    Article  PubMed  CAS  Google Scholar 

  43. Martin SF, Hergenrother PJ (1999) Biochemistry 38:4403–4408

    Article  PubMed  CAS  Google Scholar 

  44. Klabunde T, Strater N, Frohlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737–748

    Article  PubMed  CAS  Google Scholar 

  45. Benini S, Rypniewski WR, Wilson KS, Mangani S, Ciurli S (2004) J Am Chem Soc 126:3714–3715

    Article  PubMed  CAS  Google Scholar 

  46. Silverman DN, Lindskog S (1988) Acc Chem Res 21:30–36

    Article  CAS  Google Scholar 

  47. Whittaker MM, Barynin VV, Antonyuk SV, Whittaker JW (1999) Biochemistry 38:9126–9136

    Article  PubMed  CAS  Google Scholar 

  48. Pittman JK (2005) New Phytol 167:733–742

    Article  PubMed  CAS  Google Scholar 

  49. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    Article  PubMed  CAS  Google Scholar 

  50. Nam W (2007) Acc Chem Res 40:522–531

    Article  PubMed  CAS  Google Scholar 

  51. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986

    Article  PubMed  CAS  Google Scholar 

  52. Kopp DA, Lippard SJ (2002) Curr Opin Chem Biol 6:568–576

    Article  PubMed  CAS  Google Scholar 

  53. Kovaleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Acc Chem Res 40:475–483

    Article  PubMed  CAS  Google Scholar 

  54. Lindqvist Y, Huang W, Schneider G, Shanklin J (1996) EMBO J 15:4081–4092

    PubMed  CAS  Google Scholar 

  55. Mowat CG, Wehenkel A, Green AJ, Walkinshaw MD, Reid GA, Chapman SK (2004) Biochemistry 43:9519–9526

    Article  PubMed  CAS  Google Scholar 

  56. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) Science 272:1136–1144

    Article  PubMed  CAS  Google Scholar 

  57. Zhou T, Mo Y, Liu A, Zhou Z, Tsai KR (2004) Inorg Chem 43:923–930

    Article  PubMed  CAS  Google Scholar 

  58. Gray HB, Winkler JR (2003) Q Rev Biophys 36:341–372

    Article  PubMed  CAS  Google Scholar 

  59. Banci L, Bertini I, Gori Savellini G, Luchinat C (1996) Inorg Chem 35:4248–4253

    Article  PubMed  CAS  Google Scholar 

  60. Dey A, Jenney FE Jr, Adams MW, Babini E, Takahashi Y, Fukuyama K, Hodgson KO, Hedman B, Solomon EI (2007) Science 318:1464–1468

    Article  PubMed  CAS  Google Scholar 

  61. Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Kamiya N, Endo I (1998) Nat Struct Biol 5:347–351

    Article  PubMed  CAS  Google Scholar 

  62. Saito MA, Sigman DM, Morel FMM (2003) Inorg Chim Acta 356:308–318

    Article  CAS  Google Scholar 

  63. Banerjee R, Ragsdale SW (2003) Annu Rev Biochem 72:209–247

    Article  PubMed  CAS  Google Scholar 

  64. McCarthy AA, Baker HM, Shewry SC, Patchett ML, Baker EN (2001) Structure 9:637–646

    Article  PubMed  CAS  Google Scholar 

  65. Mendel RR, Bittner F (2006) Biochim Biophys Acta 1763:621–635

    Article  PubMed  CAS  Google Scholar 

  66. Hoke KR, Cobb N, Armstrong FA, Hille R (2004) Biochemistry 43:1667–1674

    Article  PubMed  CAS  Google Scholar 

  67. Ermler U (2005) Dalton Trans 3451–3458

  68. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  69. Shannon RD (1976) Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministero Italiano dell’Università e della Ricerca (MIUR) through the FIRB project RBLA032ZM7, by the European Union through EU-NMR contract 026145 and by Ente Cassa di Risparmio di Firenze. G.L.H. is funded by Wellcome Trust grant 062347. We acknowledge support from the EMBL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet M. Thornton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 109 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreini, C., Bertini, I., Cavallaro, G. et al. Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13, 1205–1218 (2008). https://doi.org/10.1007/s00775-008-0404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0404-5

Keywords

Navigation