Skip to main content
Log in

Measuring and Interpreting the Surface and Shallow Subsurface Process Influences on Coastal Wetland Elevation: A Review

  • Special Issue: Wetland Elevation Dynamics
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

A century ago, measuring elevation in tidal wetlands proved difficult, as survey leveling of soft marsh soils relative to a fixed datum was error prone. For 60 years, vertical accretion measures from marker horizons were used as analogs of elevation change. But without a direct measure of elevation, it was not possible to measure the total influence of surface and subsurface processes on elevation. In the 1990s, the surface elevation table (SET) method, which measures the movement of the wetland surface relative to a fixed point beneath the surface (i.e., the SET benchmark base), was combined with the marker horizon method (SET-MH), providing direct, independent, and simultaneous measures of surface accretion and elevation and quantification of surface and shallow subsurface process influences on elevation. SET-MH measures have revealed several fundamental findings about tidal wetland dynamics. First, accretion [A] is often a poor analog for elevation change [E]. From 50–66% of wetlands experience shallow subsidence (A > E), 7–10% shallow expansion (A < E), 7% shrink-swell, and for 24–36% A is an analog for E (A = E). Second, biological processes within the root zone and physical processes within and below the root zone influence elevation change in addition to surface processes. Third, vegetation plays a key role in wetland vertical dynamics. Plants trap sediment and increase resistance to erosion and compaction. Soil organic matter accumulation can lead to shallow expansion, but reduced plant growth can lead to subsidence, and plant death to soil collapse. Fourth, elevation rates are a better indicator of wetland response to sea-level rise than accretion rates because they incorporate subsurface influences on elevation occurring beneath the marker horizon. Fifth, combining elevation trends with relative sea-level rise (RSLR) trends improves estimates of RSLR at the wetland surface (i.e., RSLRwet). Lastly, subsurface process influences are fundamental to a wetland’s response to RSLR and plant community dynamics related to wetland transgression, making the SET-MH method an invaluable tool for understanding coastal wetland elevation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Whelan et al. (2005). Drawing at 1:24 scale

Fig. 2

Modified from Cahoon (2015)

Fig. 3

Modified from Cahoon (2015)

Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alemu, J.B., J.Y. Puah, and D. Friess. 2022. Shallow surface elevation changes in two tropical seagrass meadows. Estuarine, Coastal and Shelf Science 273: 107875.

    Article  Google Scholar 

  • Anisfeld, S.C., and T. Hill. 2012. Fertilization effects on elevation change and belowground carbon balance in a Long Island Sound tidal marsh. Estuaries and Coasts 35: 201–211.

    Article  CAS  Google Scholar 

  • Appleby, P.G., and F. Oldfield. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5: 1–8.

    Article  CAS  Google Scholar 

  • Argow, B.A., and D.M. Fitzgerald. 2006. Winter processes on northern salt marshes: Evaluating the impact of in-situ peat compaction due to ice loading, Wells, ME. Estuarine, Coastal and Shelf Science 69: 360–369.

    Article  Google Scholar 

  • Armentano, T., and G. Woodwell. 1975. Sedimentation rates in a Long Island marsh determined by 210Pb dating. Limnology and Oceanography 20: 452–456.

    Article  CAS  Google Scholar 

  • Baldwin, A.H., R.S. Hammerschlag and D.R. Cahoon. 2009. Evaluation of restored tidal freshwater wetlands. In Coastal Wetlands: an integrated ecosystem approach. ed. G. Perillo, E. Wolanski, D. Cahoon, and M. Brinson. Elsevier, p. 801–831.

  • Bansal, S., I.F. Creed, B.A. Tangen, S. Bridgham, A.R. Desai, K.W. Krauss, S. Neubauer, G.B. Noe, et al. 2023. Practical guide to measuring wetland carbon pools and fluxes. Wetlands 43: 105. https://doi.org/10.1007/s13157-023-01722-2.

    Article  Google Scholar 

  • Baustian, J.J., I.A. Mendelssohn, and M.W. Hester. 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18: 3377–3382.

    Article  Google Scholar 

  • Beckett, L., A. Baldwin, and M. Kearney. 2016. Tidal marshes across a Chesapeake Bay subestuary are not keeping pace with sea-level rise. PLoS ONE. https://doi.org/10.1371/journal.pone.0159753July28,2016.

    Article  Google Scholar 

  • Bennion, V., J. Dwyer, A. Twomey, and C. Lovelock. 2024. Decadal trends in surface elevation and tree growth in coastal wetlands of Moreton Bay. Estuaries and Coasts. https://doi.org/10.1007/s12237-024-01325-y.

    Article  Google Scholar 

  • Bevis, M., W. Scherer, and M. Merrifield. 2002. Technical issues and recommendations related to the installation of continuous GPS stations at tide gauges. Marine Geodesy 25: 87–99.

    Article  Google Scholar 

  • Bird, E.C.F., and M. Barson. 1977. Measurement of physiographic changes on mangrove-fringed estuaries and coastlines. Marine Research in Indonesia 18: 73–80.

    Article  Google Scholar 

  • Blum, L.K., R.R. Christian, D.R. Cahoon, and P.L. Wiberg. 2021. Processes influencing marsh elevation change and high marsh conversion to low marsh in a temperate saltmarsh. Estuaries and Coasts 44 (3): 818–833.

    Article  CAS  Google Scholar 

  • Boumans, R.M.J., and J.W. Day Jr. 1993. High precision measurements of sediment elevation in shallow coastal areas using a Sedimentation-Erosion Table. Estuaries 16: 375–380.

    Article  Google Scholar 

  • Byrnes, M.R., L.D. Britsch, J. Berlinghoff, R. Johnson, and S. Khalil. 2019. Recent subsidence rates for Barataria Basin, Louisiana. Geo-Marine Letters 39: 265–278.

    Article  Google Scholar 

  • Cahoon, D.R. 2006. A review of major storm impacts on coastal wetland elevation. Estuaries and Coasts 29 (6A): 889–898.

    Article  Google Scholar 

  • Cahoon, D.R. 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38: 1077–1084.

    Article  Google Scholar 

  • Cahoon, D.R., and J.C. Lynch. 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves and Salt Marshes 1: 173–186.

    Article  Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day Jr. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.

    Article  Google Scholar 

  • Cahoon, D.R., J.W. Day Jr., and D.J. Reed. 1999. The influence of surface and shallow subsurface soil processes on wetland elevation: A synthesis. Current Topics in Wetland Biogeochemistry 3: 72–88.

    Google Scholar 

  • Cahoon, D.R., P.E. Marin, B.K. Black, and J.C. Lynch. 2000a. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments. Journal of Sedimentary Research 70: 1250–1253.

    Article  Google Scholar 

  • Cahoon, D.R., P. Hensel, J. Rybczyk, K.L. McKee, C.E. Proffitt, and B. Perez. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91 (6): 1093–1105.

    Article  Google Scholar 

  • Cahoon, D.R., B.C. Perez, B.D. Segura, and J.C. Lynch. 2011a. Elevation trends and shrink-swell response of wetland soils to flooding and drying. Estuarine Coastal and Shelf Science 91: 463–568.

    Article  Google Scholar 

  • Cahoon, D.R., D.A. White, and J.C. Lynch. 2011b. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology 131: 57–68.

    Article  Google Scholar 

  • Cahoon, D.R., D.J. Reed, J.W. Day, J.C. Lynch, A. Swales, and R.R. Lane. 2020b. Applications and utility of the Surface Elevation Table – Marker Horizon method for measuring wetland elevation and shallow subsidence-expansion DISCUSSION/REPLY TO: Byrnes M, Britsch L, Berlinghoff J, Johnson R, Khalil S. 2019. Recent subsidence rates for Barataria Basin, Louisiana. Geo-Marine Letters 39:265–278. Geo-Marine Letters 40: 809–815.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., K.L. McKee, and J.T. Morris. 2021. How plants influence resilience of salt marsh and mangrove wetlands to sea-level rise. Estuaries and Coasts 44 (4): 883–898. https://doi.org/10.1007/s12237-020-00834-w.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., and P.F. Hensel. 2006. High-resolution global assessment of mangrove responses to sea-level rise: a review. In Proceedings of the Symposium on Mangrove Responses to Changes in Sea Level and Other Climate Change Effects, 13 July 2006. Catchments to Coast. The Society of Wetland Scientists 27th International Conference, 9–14 July 2006, Cairns Convention Center, Cairns, Australia, ed. E. Gilman, 9–17. Honolulu: Western Pacific Regional Fishery Management Council.

  • Cahoon, D.R., and R.E. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland II. feldspar marker horizon technique. Estuaries  12 (4): 260–268.

    Article  Google Scholar 

  • Cahoon, D.R., J.W. Day Jr., D.J. Reed, and R.S. Young. 1998. Global climate change and sea-level rise: estimating the potential for submergence of coastal wetlands. In Vulnerability of coastal wetlands in the Southeastern United States: climate change research resultsp, ed. G.R. Guntenspergen and B.A. Vairin, 21–35. United States Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR.

    Google Scholar 

  • Cahoon, D.R., J. French, T. Spencer, D.J. Reed, and I. Moller. 2000b. Vertical accretion versus elevational adjustment in UK saltmarshes: an evaluation of alternative methodologies. In Coastal and Estuarine Environments: sedimentology, geomorphology and geoarchaeology 175, ed. K. Pye and J.R.L. Allen, 223–238. London: Geological Society, Special Publications.

  • Cahoon, D.R., J.C. Lynch, P. Hensel, R. Boumans, B.C. Perez, B. Segura, and J.W. Day Jr. 2002a. High precision measurement of wetland sediment elevation: I. recent improvements to the Sedimentation-Erosion Table. Journal of Sedimentary Research 72 (5): 730–733.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002b. High precision measurement of wetland sediment elevation: II. the Rod Surface Elevation Table. Journal of Sedimentary Research 72 (5): 734–739.

    Article  CAS  Google Scholar 

  • Cahoon, D. R., M. A. Ford, and P. F. Hensel (2004), Ecogeomorphology of Spartina patens-Dominated Tidal Marshes: Soil Organic Matter Accumulation, Marsh Elevation Dynamics, and Disturbance, In The Ecogeomorphology of Tidal Marshes, Coastal Estuarine Studies, vol. 59, ed. S. Fagherazzi, M. Marani, and L. K. Blum, 247-266. Washington, DC: American Geophysical Union.

  • Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, K.L. McKee, and N. Saintilan. 2006. Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. In Wetlands and Natural Resource Management. Ecological Studies, Volume 190, ed. J.T.A. Verhoeven, B. Beltman, R. Bobbink, and D. Whigham, 271–292. Berlin: Springer-Verlag

  • Cahoon, D.R., J.C. Lynch, C. Roman, J.P. Schmit, and D. Skidds. 2019. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise and tidal marsh sustainability. Estuaries and Coasts 42: 1–15. https://doi.org/10.1007/s12237-018-0448-x.

    Article  CAS  Google Scholar 

  • Cahoon, D. R. 2003. Storms as agents of wetland elevation change: their impact on surface and subsurface sediment processes. In Proceedings of the International Conference on Coastal Sediments 2003. May 18–23, 2003, Clearwater Beach, FL, USA, 1-14. Corpus Christi: World Scientific Publishing Corp. and East Meets West Productions. CD-ROM, ISBN 981–238–422–7.

  • Cain, M., and P.F. Hensel. 2018. Wetland elevations at sub-centimeter precision: Exploring the use of digital bar code levelling for elevation monitoring. Estuaries and Coasts 41: 582–591.

    Article  Google Scholar 

  • Callaway, J. C., D. R. Cahoon, and J. C. Lynch. 2013. The surface elevation table – marker horizon method for measuring wetland accretion and elevation dynamics. In Methods in Biogeochemistry of Wetlands. ed. R. D. De Laune, K. R. Reddy, D. J. Richardson, and J. P. Megonigal, 901-917. Madison: Soil Science Society of America, No. 10.

  • Cameron, C.C., and C.A. Palmer. 1995. The mangrove peat of the Tobacco Range Islands, Belize Barrier Reef, Central America. Atoll Research Bulletin 431: 1–32.

    Google Scholar 

  • Carey, J.C., K.B. Raposa, C. Wigand, and R.S. Warren. 2017. Contrasting decadal-scale changes in elevation and vegetation in two Long Island Sound salt marshes. Estuaries and Coasts 40: 651–661.

    Article  CAS  Google Scholar 

  • Carey, A.E., and F.W. Oliver. 1918. Tidal Lands: A Study of Shore Problems. Glasgow and Bombay: Blackie and Son Limited.

    Google Scholar 

  • Castillo, J.A., R. MacKenzie, J.R. Manahan, and J. Castillo. 2022. Monitoring the sediment surface elevation change across a chronosequence of restored stands of tropical mangroves and their contemporary carbon sequestration in soil pool. Forests 13: 241. https://doi.org/10.3390/f13020241.

    Article  Google Scholar 

  • Chambers, L., H. Steinmuller, and J. Breithaupt. 2019. Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss. Ecology 100 (7): e02720. https://doi.org/10.1002/ecy.2720.

    Article  Google Scholar 

  • Chen, L., Q. Lin, K. Krauss, Y. Zhang, N. Cormier, and Q. Yang. 2021. Forest thinning in the seaward fringe speeds up surface elevation increment and carbon accumulation in managed mangrove forests. Journal of Applied Ecology 58: 1899–1909.

    Article  CAS  Google Scholar 

  • Cherry, J.A., K.L. McKee, and J.B. Grace. 2009. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. Journal of Ecology 97: 67–77.

    Article  Google Scholar 

  • Childers, D., F. Sklar, B. Drake, and T. Jordan. 1993. Seasonal measurements of sediment elevation in three mid-Atlantic estuaries. Journal of Coastal Research 9: 986–1003.

    Google Scholar 

  • Chmura, G.L., S.C. Anisfeld, D.R. Cahoon, and J.C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17 (4): 1111. https://doi.org/10.1029/2002GB001917.

    Article  CAS  Google Scholar 

  • Cormier, N., K. Krauss, A. Demopoulos, B. Jessen, J. McClain-Counts, A. From, and L. Flynn. 2022. Potential for carbon and nitrogen sequestration by restoring tidal connectivity and enhancing soil surface elevations in denuded and degraded south Florida mangrove ecosystems. In Wetland Carbon and Environmental Management, Geophysical Monograph 267, ed. K. Krauss, Z. Zhu, and C. Stagg, 143–158. American Geophysical Union: John Wiley & Sons Inc.

    Google Scholar 

  • Davis, J., C. Currin, and J.T. Morris. 2017. Impacts of fertilization and tidal inundation on elevation change in microtidal, low relief salt marshes. Estuaries and Coasts 40: 1677–1687.

    Article  CAS  Google Scholar 

  • Day, J.W., Jr., G.P. Kemp, D.J. Reed, D.R. Cahoon, R.M. Boumans, J.M. Suhayda, and R. Gambrell. 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecological Engineering 37: 229–240.

    Article  Google Scholar 

  • Davis, M.J., K.L. Poppe, J.M. Rybczyk, J.W. Chamberlin, E.E. Grossman, M. Tottman, T. Zackey, F. Leonetti, S. Shull, I. Woo, and S. De La Cruz. 2024. Vulnerability to sea-level rise varies among estuaries and habitat types: lessons learned from a network of surface elevation tables in Puget Sound. Estuaries and Coasts. https://doi.org/10.1007/s12237-024-01335-w.

    Article  Google Scholar 

  • DeLaune, R., W.H. Patrick Jr., and R. Buresh. 1978. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275: 532–533.

    Article  CAS  Google Scholar 

  • Doar, W., and K. Luciano. 2023. Quantifying multi-decadal geodetic and salt marsh surface elevation change: The South Carolina Geological Survey SET network. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01290-y.

    Article  Google Scholar 

  • Drake, K., H. Halifax, S. Adamowicz, and C. Craft. 2015. Carbon sequestration in tidal marshes of the northeast United States. Environmental Management 56: 998–1008.

    Article  Google Scholar 

  • Drexler, J., C. Fuller, and S. Archfield. 2018. The approaching obsolescence of 137Cs dating of wetland soils. Quaternary Science Reviews 199: 83–96.

    Article  Google Scholar 

  • Elsey-Quirk, T. 2016. Impact of Hurricane Sandy on salt marshes of New Jersey. Estuarine, Coastal and Shelf Science 183: 235–248.

    Article  Google Scholar 

  • Emery, K.O., and D.G. Aubrey. 1991. Sea Levels, Land Levels, and Tide Gauges. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Erwin, R.M., D. Cahoon, D. Prosser, G. Sanders, and P.F. Hensel. 2006. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to water birds. Estuaries 29: 96–106.

    Article  Google Scholar 

  • Feher, L.C., M. Osland, G. Anderson, W.C. Vervaeke, K.W. Krauss, K.R.T. Whelan, K. Balentine, G. Tiling-Range, T.J. Smith III., and D.R. Cahoon. 2020. The long-term effects of Hurricanes Wilma and Irma on soil elevation change in Everglades mangrove forests. Ecosystems 23: 917–931.

    Article  Google Scholar 

  • Feher, L., M. Osland, K.R.T. Whelan, C. Coronado-Molina, F. Sklar, K. Krauss, R. Howard, D.R. Cahoon, J.C. Lynch, K. McKee, L. Lamb-Wotton, T. Troxler, J. Conrad, G. Anderson, C.W. Vervaeke, and T.J. Smith III. 2022. Soil elevation change in mangrove forests and marshes of the Greater Everglades: a regional synthesis of surface elevation table – marker horizon (SET – MH) data. Estuaries and Coasts.  https://doi.org/10.1007/3s12237-022-01141-2.

  • Fennessy, M.S., C. Ibanez, J. Calvo-Cubero, P. Sharpe, A. Rovira, J. Callaway, and N. Caiola. 2019. Environmental controls on carbon sequestration, sediment accretion, and elevation change in the Ebro River delta: Implications for wetland restoration. Estuarine, Coastal and Shelf Science 222: 32–42.

    Article  CAS  Google Scholar 

  • Ford, M.A., and J.B. Grace. 1998. Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation, and soil elevation changes in a coastal marsh. Journal of Ecology 86: 974–982.

    Article  Google Scholar 

  • Fu, H., W. Wang, W. Ma, and M. Wang. 2018. Differential in surface elevation change across mangrove forests in the intertidal zone. Estuarine, Coastal and Shelf Science 207: 203–208.

    Article  CAS  Google Scholar 

  • Gilman, E., J. Ellison, I. Sauni Jr., and S. Tuaumu. 2007. Trends in surface elevations of American Samoa mangroves. Wetlands Ecology and Management 15: 391–404.

    Article  Google Scholar 

  • Graham, S.A., and I.A. Mendelssohn. 2013. Functional assessment of differential sediment slurry applications in a deteriorating brackish marsh. Ecological Engineering 51: 264–274.

    Article  Google Scholar 

  • Graham, S.A., and I.A. Mendelssohn. 2014. Coastal wetland stability maintained through counterbalancing accretionary responses to chronic nutrient enrichment. Ecology 95: 3271–3283.

    Article  Google Scholar 

  • Haaf, L., E. Watson, T. Elsey-Quirk, K. Raper, A. Padeletti, M. Maxwell-Doyle, D. Kreeger, and D. Velinsky. 2022. Sediment accumulation, elevation change, and the vulnerability of tidal marshes in the Delaware estuary and Barnegat Bay to accelerated sea-level rise. Estuaries and Coasts 45: 413–427.

    Article  Google Scholar 

  • Harrison, E.Z., and A.L. Bloom. 1977. Sedimentation rates on salt marshes in Connecticut. Journal of Sedimentary Petrology 47: 1484–1490.

    Google Scholar 

  • Hartnall, T.J. 1984. Salt-marsh vegetation and micro-relief development on the New Marsh at Gibraltar Point, Lincolnshire. In Coastal Resources: UK Perspectives, ed. M. Clark, 37-58. Norwich: Geo Books.

  • Hayden, H.L., and E. Granek. 2015. Coastal sediment elevation change following anthropogenic mangrove clearing. Estuarine, Coastal and Shelf Science 165: 70–74.

    Article  Google Scholar 

  • Hongwiset, S., C. Rodtassana, S. Poungparn, S. Umnouysin, and V. Suchewaboripont. 2022. Synergetic roles of mangrove vegetation on sediment accretion in coastal mangrove plantations in central Thailand. Forests 13: 1739. https://doi.org/10.3390/f13101739.

    Article  Google Scholar 

  • Howard, R., A. From, K. Krauss, K. Andres, N. Cormier, L. Allain, and M. Savarese. 2020. Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts. Hydrobiologia 847: 1087–1106.

    Article  CAS  Google Scholar 

  • Howe, A.J., J.F. Rodriguez, and P.M. Saco. 2009. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuarine, Coastal and Shelf Science 84: 75–83.

    Article  CAS  Google Scholar 

  • Huxham, M., M. Kumara, L. Jayatissa, K. Krauss, J. Kairo, J. Langat, M. Mencuccini, M. Skov, and B. Kirui. 2010. Intra - and interspecific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society, B 365: 2127–2135.

    Article  Google Scholar 

  • Ibanez, C., P.J. Sharpe, J.W. Day, J.N. Day, and N. Prat. 2010. Vertical accretion and relative sea-level rise in the Ebro delta wetland (Catalonia, Sprain). Wetlands 30: 979–988.

    Article  Google Scholar 

  • Jankowski, K., T. Tornquist, and A. Fernandes. 2017. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nature Communications 8 (1): 14792. https://doi.org/10.1038/ncomms14792.

    Article  CAS  Google Scholar 

  • Kamrath, B., M. Burchell, N. Cormier, K. Krauss, and D. Johnson. 2019. Potential resiliency of a created tidal marsh to sea-level rise. Transactions of the ASABE 62: 1567–1577.

    Article  Google Scholar 

  • Kargar, A., R. MacKenzie, A. Fafard, K. Krauss, and J. van Aardt. 2021. Surface elevation change evaluation in mangrove forests using a low-cost, rapid-scan terrestrial laser scanner. Limnology and Oceanography: Methods 19: 8–20. https://doi.org/10.1002/lom3.10401.

    Article  Google Scholar 

  • Kaye, C., and E. Barghoorn. 1964. Late Quaternary sea-level change and crustal rise at Boston, Massachusetts, with notes on the autocompaction of peat. Geological Society of America Bulletin 75: 63–80.

    Article  Google Scholar 

  • Keogh, M., and T. Tornquist. 2019. Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: A critical evaluation. Ocean Science 15: 61–73.

    Article  Google Scholar 

  • Krauss, K.W., J.A. Allen, and D.R. Cahoon. 2003. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine, Coastal, and Shelf Science 56: 251–259.

    Article  Google Scholar 

  • Krauss, K., D.R. Cahoon, J.A. Allen, J.C. Lynch, N. Cormier, and K. Ewel. 2010. Surface Elevation Change and Susceptibility of Different Mangrove Zones to Sea-Level Rise on Pacific High Islands of Micronesia. Ecosystems 13: 129–143.

    Article  Google Scholar 

  • Krauss, K., K. McKee, C. Lovelock, D. Cahoon, N. Saintilan, R. Reef, and L. Chen. 2014. How mangrove forests adjust to rising sea level. The New Phytologist [tansley Review] 202: 19–34.

    Article  Google Scholar 

  • Krauss, K., N. Cormier, M. Osland, M. Kirwan, C. Stagg, J. Nestlerode, M. Russell, A. From, A. Spivak, D. Dantin, J. Harvey, and A. Almario. 2017. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Scientific Reports 7: 1–11.

    Article  Google Scholar 

  • Krauss, K.W., A. Demopoulos, N. Cormier, A. From, J. McClains-Counts, and R.R. Lewis III. 2018. Ghost forests of Marco Island: Mangrove mortality driven by belowground soil structural shifts during tidal hydrologic alteration. Estuarine, Coastal and Shelf Science 212: 51–62.

    Article  CAS  Google Scholar 

  • Krauss, K.W., G.B. Noe, J.A. Duberstein, N. Cormier, A.S. From, W.H. Conner, and D.R. Cahoon. 2023. Hummock and hollow patterning (microtopography) a consequence of shallow subsidence in forested wetlands. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01227-5.

    Article  Google Scholar 

  • Kumara, M., L. Jayatissa, K. Krauss, D. Phillips, and M. Huxham. 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164: 545–553.

    Article  CAS  Google Scholar 

  • Lal, K., C.D. Woodroffe, A. Zawadski, and K. Rogers. 2023. Coastal wetland elevation dynamics, sedimentation, and accommodation space across timescales. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01308-5.

    Article  Google Scholar 

  • Lane, R.R., J.W. Day Jr., and J.N. Day. 2006. Wetland surface elevation, vertical accretion and subsidence in three Louisiana estuaries receiving diverted Mississippi River water. Wetlands 26: 1130–1142.

    Article  Google Scholar 

  • Lang’at, J.K.S., J. Kairo, M. Mencuccini, S. Bouillon, M. Skov, S. Waldron, and M. Huxham. 2014. Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS ONE 9 (9): e107868.

    Article  Google Scholar 

  • Langley, J.A., K.L. McKee, D.R. Cahoon, J.A. Cherry, and J.P., and J.P. Megonigal. 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences 106: 6182–6186.

    Article  CAS  Google Scholar 

  • Lovelock, C.E., V. Bennion, A. Grinham, and D.R. Cahoon. 2011. The role of surface and subsurface processes in keeping pace with sea-level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14: 745–757.

    Article  CAS  Google Scholar 

  • Lovelock, C., M.F. Adame, V. Bennion, M. Hayes, J. O’Mara, R. Reef, and N. Santini. 2014. Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and salt marshes of southeast Queensland, Australia. Estuaries and Coasts 37: 763–771.

    Article  CAS  Google Scholar 

  • Lovelock, C., D. Cahoon, D. Friess, G. Guntenspergen, K. Krauss, R. Reef, T. Triet, M. Saunders, F. Sidik, A. Swales, K. Rogers, N. Saintilan, and Le Xuan Thuyen. 2015. The vulnerability of Indo-Pacific mangrove forests to sea level rise. Nature 526: 559–563.

    Article  CAS  Google Scholar 

  • Lu, W., J. Xiao, W. Lei, J. Du, Z. Li, P. Cong, W. Hou, J. Zhang, L. Chen, Y. Zhang, and G. Liao. 2018. Human activities accelerated the degradation of saline seepweed red beaches by amplifying top-down and bottom-up forces. Ecosphere 9 (7): e02352. https://doi.org/10.1002/ecs2.2352.

    Article  Google Scholar 

  • Lynch, J.C., P. Hensel, and D. R. Cahoon. 2015. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics. Fort Collins: National Park Service. Natural Resource Report NPS/NCBN/NRR-2015/1078.

  • Lynch, J.C., N. Winn, K. Kovalenko, and G. Guntenspergen. 2023. Comparing wetland elevation change using a surface elevation table, digital level, and total station. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01263-1.

    Article  Google Scholar 

  • MacKenzie, R.A., K.W. Krauss, N. Cormier, E. Eperiam, J. van Aardt, A.R. Kargar, J. Grow, and J. Val Klump. 2023. Relative effectiveness of radionuclide [210Pb], surface elevation table [SET], and LiDAR at monitoring mangrove forest surface elevation change. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01301-y.

    Article  Google Scholar 

  • Maher, N., and A. Starke. 2023. Suboptimal root zone growth prevents Long Island (NY) salt marshes from keeping pace with sea level rise. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01295-7.

    Article  Google Scholar 

  • McKee, K.L. 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483.

    Article  Google Scholar 

  • McKee, K.L., and J.A. Cherry. 2009. Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta. Wetlands 29: 2–15.

    Article  Google Scholar 

  • McKee, K.L., and W.C. Vervaeke. 2018. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Global Change Biology 24: 1224–1238.

    Article  Google Scholar 

  • McKee, K.L., D.R. Cahoon, and I.C. Feller. 2007. Caribbean mangroves adjust to rising sea-level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556.

    Article  Google Scholar 

  • McKee, K.L., K.W. Krauss, and D.R. Cahoon. 2021. Does geomorphology determine vulnerability of mangrove coasts to sea-level rise? In Dynamic Sedimentary Environments of Mangrove Coasts, ed. F. Sidik and D. Friess, 256-272. Amsterdam: Elsevier.

  • Moon, J., L. Feher, T. Lane, W. Vervaeke, M. Osland, D. Head, B. Chivolu, D. Stewart, D. Johnson, J. Grace, K. Metzger, and amd N. Rankin. 2022. Surface elevation change dynamics in coastal marshes along the northwestern Gulf of Mexico: anticipating effects of rising sea level and intensifying hurricanes. Wetlands. https://doi.org/10.1007/s13157-022-01565-3.

    Article  Google Scholar 

  • Moorman, M., Z. Ladin, A. Bessler, J. Richter, R. Harrison, B. van Druten, W. Stanton, C. Hayes, M. Hoff, E. Tsai, D. Wells, J. Tupacz, C. Sasser, and N. Rankin. 2023. Application of the SET-MH technique to monitor coastal wetlands and plan for ecological transformations on NWRs on the South Atlantic geography. Estuaries and Coasts. https://doi.org/10.1007/s12237/-023-01225-7.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.

    Article  Google Scholar 

  • Morris, J.T., J. Lynch, K.A. Renken, S. Stevens, M. Tyrrell, and H. Plaisted. 2020. Tidal and hurricane impacts on saltmarshes in the northeastern coastal and barrier network: Theory and empirical results. Estuaries and Coasts 43: 1658–1671.

    Article  CAS  Google Scholar 

  • Morris, J.T., and K. Sundberg. 2024. Responses of coastal wetlands to rising sea level revisited: the importance of organic production. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01313-8.

    Article  Google Scholar 

  • Morris, J.T., J.A. Langley, W.C. Vervaeke, N. Dix, I.C. Feller, P. Marcum, and S. K. Chapman. 2023. Mangrove trees outperform saltmarsh grasses in building elevation but collapse rapidly under high rates of sea-level rise. Earth’s Future 11, e2022EF003202. https://doi.org/10.1029/2022EF003202.

  • Nuttle, W.K., H.F. Hemond, and K.D. Stolzenbach. 1990. Mechanisms of water storage in salt marsh sediments: The importance of dilation. Hydrological Processes 4: 1–13.

    Article  Google Scholar 

  • Nyman, J.A., R. Walters, R. DeLaune, and W.H. Patrick Jr. 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69: 370–380.

    Article  Google Scholar 

  • Osland, M.J., L.C. Feher, G.H. Anderson, W.C. Vervaeke, K. Krauss, K.R.T. Whelan, K.M. Balentine, G. Tiling-Range, T.J. Smith III., and D.R. Cahoon. 2020. A hurricane-induced ecological regime shift: Mangrove conversion to mudflat in Florida’s Everglades National Park. Wetlands 40: 1445–1458.

    Article  Google Scholar 

  • Osland, M. J., K. T. Griffith, J. C. Larriviere, L. C. Feher, D. R. Cahoon, N. M. Enwright, D. A. Oster, J. M. Tirpak, M. S. Woodrey, R. Collini, J. J. Baustian, J. L. Breithaupt, J. A. Cherry, J. R. Conrad, N. Cormier, C. A. Coronado-Molina, J. F. Donoghue, S. A. Graham, J. W. Harper, M. W. Hester, R. J. Howard, K. W. Krauss, D. E. Kroes, R. R. Lane, K. L. McKee, I. A. Mendelsshon, B. A. Middleton, J. A. Moon, S. C. Piazza, N. M. Rankin, F. H. Sklar, G. D. Steyer, K. M. Swanson, C. M. Swarzenski, W. C. Vervaeke, J. M. Willis, and K. V. Wilson. 2017. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: gaps and opportunities for developing a coordinated regional sampling network. PLOS ONE 12(9): article e0183431.

  • Paquette, C.H., K. Sundberg, R.M.J. Boumans, and G.L. Chmura. 2004. Changes in salt marsh surface elevation due to variability in evapotranspiration and tidal flooding. Estuaries 27: 82–89.

    Article  Google Scholar 

  • Pasternack, G.B., and G. Brush. 1998. Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries 21: 407–415.

    Article  Google Scholar 

  • Payne, A., D. Burdick, and G. Moore. 2019. Potential effects of sea-level rise on salt marsh elevation dynamics in a New Hampshire estuary. Estuaries and Coasts 42: 1405–1418.

    Article  CAS  Google Scholar 

  • Pitchford, J., K. Cressman, J. Cherry, B. Russell, J. McIlwain, M. Archer, and W. Underwood. 2022. Trends in surface elevation and accretion in a retrograding delta in coastal Mississippi, USA from 2012–2016. Wetlands Ecology and Management. https://doi.org/10.1007/s11273-022-09871-7.

    Article  Google Scholar 

  • Potorouglou, M., J. Bull, K. Krauss, H. Kennedy, M. Fusi, D. Daffonchio, M. Mangora, M. Githaiga, K. Diele, and M. Huxham. 2017. Measuring the role of seagrasses in regulating sediment surface elevation. Scientific Reports 7: 11917. https://doi.org/10.1038/s41598-017-12354-y.

    Article  CAS  Google Scholar 

  • Ranwell, D.S. 1964. Spartina salt marshes in southern England. II. Rate and seasonal pattern of sediment accretion. Journal of Ecology 52: 79–94.

    Article  Google Scholar 

  • Raposa, K., M. Ekberg, D. Burdick, N. Ernst, and S. Adamowicz. 2016a. Elevation change and the vulnerability of Rhode Island (USA) salt marshes to sea-level rise. Regional Environmental Change 17: 389–397.

    Article  Google Scholar 

  • Raposa, K., K. Wasson, E. Smith, J. Crooks, P. Delgado, S. Fernald, M. Ferner, A. Helms, L. Hice, J. Mora, B. Puckett, D. Sanger, S. Shull, L. Spurrier, R. Stevens, and S. Lerberg. 2016b. Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-metric indices. Biological Conservation 204: 263–275.

    Article  Google Scholar 

  • Raposa, K.B., M. Bradley, C. Chaffee, N. Ernst, W. Ferguson, T. E. Kutcher, R. A. McKinney, K.M. Miller, S. Rasmussen, E. Tymkiw, and C. Wigand. 2022. Laying it on thick: Ecosystem effects of sediment placement on a microtidal Rhode Island salt marsh. Frontiers in Environmental Science 10: 939870. https://doi.org/10.3389/fenvs.2022.939870.

  • Reed, D.J. 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: The role of winter storms. Estuaries 12: 222–227.

    Article  Google Scholar 

  • Reed, D. J. and D. R. Cahoon. 1993. Marsh submergence vs. marsh accretion: interpreting accretion deficit data in coastal Louisiana. In Proceedings of the Eighth Symposium on Coastal and Ocean Management, Coastal Zone '93, ed. O. T. Magoon, W. S. Wilson, H. Converse, and L. T. Tobin, 243-257. New York: ASCE Publishers.

  • Richard, G. 1978. Seasonal and environmental variations in sediment accretion in a Long Island salt marsh. Estuaries 1: 29–35.

    Article  CAS  Google Scholar 

  • Rogers, K., and N, Saintilan, and C. Copeland. 2014. Managed retreat of saline coastal wetlands: Challenges and opportunities identified from the Hunter River estuary, Australia. Estuaries and Coasts 37: 67–78.

    Article  Google Scholar 

  • Rogers, K., and N. Saintilan. 2008. Relationships between surface elevation and groundwater in mangrove forests of southeast Australia. Journal of Coastal Research 24: 63–69.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, and D. Cahoon. 2005a. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia. Wetlands Ecology and Management 13: 587–598.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, and J. Heijnis. 2005b. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: The role of sedimentation, subsidence, and sea-level rise. Estuaries 28: 551–559.

    Article  Google Scholar 

  • Rogers, K., K. Wilton, and N. Saintilan. 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science 66: 559–569.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, A. Howe, and J. Rodriguez. 2013. Sedimentation, elevation and marsh evolution in a southeastern Australia estuary during changing climatic conditions. Estuarine, Coastal and Shelf Science 133: 172–181.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, D. Mazumder, and J. Kelleway. 2019. Mangrove dynamics and blue carbon sequestration. Biology Letters. https://doi.org/10.1098/rsbl.2018.0471.

    Article  Google Scholar 

  • Roman, C.T., J.W. King, D.R. Cahoon, J.C. Lynch, and P.G. Appleby. 2007. Evaluation of marsh development processes at Fire Island National Seashore (New York): recent and historic perspectives. Boston: National Park Service, Technical Report NPS/NER/NRTR – 2007/089.

  • Roman, C.T., J.C. Lynch, and D.R. Cahoon. 2023. Twenty-year record of salt marsh elevation dynamics in response to sea-level rise and storm-driven barrier island geomorphic processes: Fire Island. New York, USA: Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01234-6.

    Book  Google Scholar 

  • Rybczyk, J.M., and D.R. Cahoon. 2002. Estimating the potential for submergence for two subsiding wetlands in the Mississippi River delta. Estuaries 25: 985–998.

    Article  Google Scholar 

  • Saintilan, N., K. Kovalenko, G. Guntenspergen, K. Rogers, J.C. Lynch, D.R. Cahoon, C. Lovelock, D. Friess, E. Ashe, K. Krauss, N. Cormier, T. Spencer, J. Adams, J. Raw, C. Ibanez, F. Scarton, S. Temmerman, P. Meire, T. Maris, K. Thorne, J. Brazner, G. Chmura, T. Bowron, V.P. Gamage, K. Cressman, C. Endris, C. Marconi, P. Marcum, K. St, W. Laurent, K. Reay, J.A. Garwood. Raposa, and N. Khan. 2022. Constraints on the adjustment of tidal marshes to accelerating sea-level rise. Science 377: 523–527.

    Article  CAS  Google Scholar 

  • Saintilan, N., B. Horton, T. Tornquist, E. Ashe, N. Khan, M. Schuerch, C. Perry, R. Kopp, G. Garner, N. Murray, K. Rogers, S. Albert, J. Kelleway, T. Shaw, C. Woodroffe, C. Lovelock, M. Goddard, L. Hutley, K. Kovalenko, L. Feher, and G. Guntenspergen. 2023. Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C. Nature. https://doi.org/10.1038/s41586-023-06448-z.

    Article  Google Scholar 

  • Saintilan, N., Y. Sun, C. Lovelock, K. Rogers, M. Goddard, L. Hutley, J. Kelleway, L. Mosely, S. Dittman, and N. Cormier. 2023. Collation and analysis of the Australian surface elevation table-marker horizon dataset. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01267-x.

    Article  Google Scholar 

  • Sasmito, S.D., D. Murdiyarso, D. Friess, and S. Kurnianto. 2016. Can mangroves keep pace with contemporary sea level rise? A global data review. Wetlands Ecology and Management 24: 263–278.

    Article  Google Scholar 

  • Schoot, P.M., and J.E.A. de Jong. 1982. Sedimentatie en erosiemetingen met behulp van de Sedi-Eros-Tafel (Set). Rijkswaterstaat notitie: DDMI-82.401

  • Spenceley, A.P. 1977. The role of pneumatophores in sedimentary processes. Marine Geology 24: M31–M37.

    Article  Google Scholar 

  • Spenceley, A.P. 1982. Sedimentation patterns in a mangal on Magnetic Island near Townsville, North Queensland, Australia. Singapore Journal of Tropical Geography 3: 100–107.

    Article  Google Scholar 

  • Stagg, C.L., K. Krauss, D.R. Cahoon, N. Cormier, W.H. Conner, and C. Swarzenski. 2016. Processes contributing to resilience of coastal wetlands to sea-level rise. Ecosystems 19: 1445–1459.

    Article  CAS  Google Scholar 

  • Stagg, C.L., C. Laurenzano, W.C. Vervaeke, K.W. Krauss, and K.L. McKee. 2022. Presence of the herbaceous marsh species Schoenoplectus americanus enhances surface elevation gain in transitional coastal wetland communities exposed to elevated CO2 and sediment deposition events. Plants. https://doi.org/10.3390/plants11091259.

    Article  Google Scholar 

  • Stagg, C.L., L.A. Sharp, E. Fromenthal, B. Couvillion, V. Woltz, and S. Piazza. 2024. Accelerating elevation gain indicates land loss associated with erosion in Mississippi River deltaic plain tidal wetlands. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01321-8.

    Article  Google Scholar 

  • Stearns, L., and D. MacCreary. 1957. The case of the vanishing brick dust: Contribution to knowledge of marsh development. Mosquito News 17: 303–304.

    Google Scholar 

  • Steinmuller, H.E., E. Bourque, S.B. Lucas, K.M. Engelbert, J. Garwood, and J.L. Breithaupt. 2022. Comparing vertical change in riverine, bayside, and barrier island soils in response to acute and chronic disturbance. Estuaries and Coasts. https://doi.org/10.1007/s12237-022-01131-4.

    Article  Google Scholar 

  • Steyer, G., C. Sasser, J. Visser, E. Swenson, J. Nyman, and R. Raynie. 2003. A proposed coast-wide reference monitoring system for evaluating wetland restoration trajectories in Louisiana. Environmental Monitoring and Assessment 81: 107–117.

    Article  Google Scholar 

  • Stoddard, D., D.J. Reed, and J. French. 1989. Understanding salt marsh accretion, Scolt Head Island, Norfolk, England. Estuaries 12: 228–236.

    Article  Google Scholar 

  • Stokes, D.J., T.R. Healy, and P.J. Cooke. 2009. Surface elevation changes and sediment characteristics of intertidal surfaces undergoing mangrove expansion and mangrove removal, Waikaraka Estuary, Tauranga Harbour, New Zealand. International Journal of Ecology and Development 12: 88–106.

    Google Scholar 

  • Stokes, D.J., H.E. Glover, K.R. Bryan, and C.A. Pilditch. 2023. Environmental state of a small intertidal estuary a decade after mangrove clearance. Waikaraka Estuary, Aotearoa New Zealand: Ocean and Coastal Management. https://doi.org/10.1016/j.ocecoaman.2023.106731.

    Book  Google Scholar 

  • Swales, A., P. Denys, V.I. Pickett, and C. Lovelock. 2016. Evaluating deep subsidence in a rapidly-accreting mangrove forest using GPS monitoring of surface-elevation benchmarks and sedimentary records. Marine Geology 380: 205–218.

    Article  CAS  Google Scholar 

  • Swales, A., G. Reeve, D. Cahoon, and C.E. Lovelock. 2019. Landscape evolution of a fluvial sediment-rich Avicennia marina mangrove forest: Insights from seasonal and inter-annual surface-elevation dynamics. Ecosystems 22 (6): 1232–1255.

    Article  CAS  Google Scholar 

  • Thorne, K.M., M. Bristow, L. Rankin, K. Kovalenko, J. Neville, C. Freeman, and G. Guntenspergen. 2023. Understanding marsh elevation and accretion processes and vulnerability to rising sea levels across climatic and geomorphic gradients in California. USA: Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01298-4.

    Book  Google Scholar 

  • Tornquist, T., D.R. Cahoon, J.T. Morris, and J.W. Day. 2021. Coastal wetland resilience, accelerated sea-level rise, and the importance of timescale. AGU Advances. https://doi.org/10.1029/2020AV000334.

    Article  Google Scholar 

  • van Duin, W.E., K.S. Dijkema, and J. Zegers. 1997. Veranderingen in bodemhoogte (opslibbing, erosi en inklink) in de Peazemerlannen. IBN-report 326, Wageningen.

  • van Eerdt, M.M. 1985. The influence of vegetation on erosion and accretion in salt marshes of the Oosterschelde, the Netherlands. Vegetatio 62: 367–373.

    Article  Google Scholar 

  • Van Wijnen, H.J., and J.P. Bakker. 2001. Long-term surface elevation change in salt marshes: A prediction of marsh response to future sea-level rise. Estuarine, Coastal and Shelf Science 52: 381–390.

    Article  Google Scholar 

  • Wang, G., M. Wang, X. Lu, and M. Jiang. 2016. Surface elevation change and susceptibility of coastal wetlands to sea-level rise in Liaohe Delta, China. Estuarine, Coastal and Shelf Science 180: 204–211.

    Article  Google Scholar 

  • Webb, E.L., D. Friess, K. Krauss, D.R. Cahoon, G. Guntenspergen, and J. Phelps. 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.

    Article  Google Scholar 

  • Whelan, K.R.T., T.J. Smith III., D.R. Cahoon, J.C. Lynch, and G.H. Anderson. 2005. Groundwater control of mangrove surface elevation: Shrink-swell of mangrove soils varies with depth. Estuaries 28: 833–843.

    Article  Google Scholar 

  • Whelan, K.R.T., T.J. Smith III., G. Anderson, and M.L. Ouellette. 2009. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29: 16–23.

    Article  Google Scholar 

  • Wigand, C., C. Roman, E. Davey, R. Johnson, A. Hanson, B. Moran, M. Stolt, D. Cahoon, J. Lynch, and P. Rafferty. 2014. Below the disappearing marshes of an urban estuary: Historic nitrogen trends and soil structure. Ecological Applications 24: 633–649.

    Article  Google Scholar 

  • Xiong, Y., A. Ola, Sang Minh Phan, J. Wu, and C. Lovelock. 2019. Soil structure and its relationship to shallow subsidence in coastal wetlands. Estuaries and Coasts 42: 2124–2123.

    Article  Google Scholar 

  • Yeates, A.G., J.B. Grace, J. Olker, G. Guntenspergen, D.R. Cahoon, S. Adamowicz, S. Anisfeld, N. Barrett, A. Benzecry, L. Blum, R. Christian, J. Grzyb, E. Hartig, K. Leo, S. Lerberg, J.C. Lynch, N. Maher, J.P. Megonigal, W. Reay, D. Siok, A. Starke, V. Turner, and S. Warren. 2020. Hurricane Sandy effects on coastal marsh elevation change. Estuaries and Coasts 43: 1640–1657.

    Article  Google Scholar 

  • Zhu, C., J.A. Langley, L.H. Ziska, D.R. Cahoon, J.P. Megonigal. 2022. Accelerated sea-level rise is suppressing CO2 stimulation of tidal marsh productivity: a 33-year study. Science Advances 8: eabn0054. https://doi.org/10.1126/sciadv.

Download references

Acknowledgements

J. C. Lynch, C. T. Roman, and G. R. Guntenspergen provided helpful comments on early drafts of the manuscript. J. C. Lynch provided technical assistance with drafting or revising the figures. The author is grateful for the helpful comments on an earlier version of the manuscript from K. Krauss, G. Noe and an anonymous reviewer.

Disclaimer

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Cahoon.

Additional information

Communicated by Just Cebrian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahoon, D.R. Measuring and Interpreting the Surface and Shallow Subsurface Process Influences on Coastal Wetland Elevation: A Review. Estuaries and Coasts (2024). https://doi.org/10.1007/s12237-024-01332-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-024-01332-z

Keywords

Navigation