Skip to main content

Advertisement

Log in

Twenty-Year Record of Salt Marsh Elevation Dynamics in Response to Sea-Level Rise and Storm-Driven Barrier Island Geomorphic Processes: Fire Island, NY, USA

  • Special Issue: Wetland Elevation Dynamics
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Twenty years of surface elevation table and marker horizon monitoring at three sites along the Fire Island (New York, USA) barrier island indicates that rates of marsh surface elevation change (Watch Hill, 4.4 mm year−1; Hospital Point, 3.5 mm year−1; Great Gun, − 0.3 mm year−1) were lower than the rate of monthly mean sea-level rise during the 2002–2022 monitoring period (5.1 mm year−1, NOAA Sandy Hook, NJ, water level station). The Great Gun monitoring site, with an elevation deficit relative to sea-level rise, shallow subsidence (surface accretion > marsh elevation rate), low elevation capital, prolonged marsh surface flooding, and declining vegetation cover, displays characteristics common to deteriorating marshes. The submergence trend was not as evident at the other monitoring sites, but with low tidal range (0.4 m) and projections of accelerated sea-level rise, sustainability is questioned if marsh elevation change continues to lag behind the local rate of relative sea-level rise. Hurricane Sandy occurred during the monitoring period (October 2012), creating a new inlet located about 300 m from one of the monitoring sites. Surprisingly, no immediate signals of deposition or erosion were noted from the marker horizon sampling. Overwash sand deposits on the marsh surface were extensive along Fire Island, although not reaching the monitoring sites, and will likely provide opportunities for future salt marsh growth, as will the flood-tide delta created by the inlet. Projecting the future of barrier island salt marshes under a regime of accelerated sea-level rise and episodic storms requires knowledge of marsh elevation and accretion processes and geomorphic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All SET and marker horizon data presented in this paper are available at US Government data catalog; https://catalog.data.gov/dataset/surface-elevation-table-set-data-package.

References

  • Anisfeld, S.C., T.D. Hill, and D.R. Cahoon. 2016. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound. Estuarine, Coastal and Shelf Science 170: 145–154.

    Article  Google Scholar 

  • Aretxabaleta, A.L., N.K. Ganju, B. Butman, and R.P. Signell. 2017. Observations and a linear model of water level in an interconnected inlet-bay system. Journal of Geophysical Research – Oceans. 122; 2760–2780. https://doi.org/10.1002/2016JC012318. Accessed 22 Nov 2022.

  • Bertness, M.D. 1991. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology 72: 138–148.

    Article  Google Scholar 

  • Bertness, M.D., C.P. Brisson, M.C. Bevil, and S.M. Crotty. 2014. Herbivory drives the spread of salt marsh die-off. PLoS ONE 9(3): e92916. https://doi.org/10.1371/journal.pone.0092916. Accessed 7 Jun 2023.

  • Blake, E.S., T. B. Kimberlain, R.J. Berg, J.P. Cangialosi, and J.L. Beven II. 2013. Tropical cyclone report, Hurricane Sandy, 22-29 October 2012. Report AL182021, NOAA National Hurricane Center. https://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf. Accessed 27 Sep 2022.

  • Boon, J.D. 2012. Evidence of sea level acceleration at U.S. and Canadian tide stations, Atlantic coast, North America. Journal of Coastal Research 28: 1437–1445.

    Article  Google Scholar 

  • Boothroyd, J.C., N.E. Friedrich, and S.R. McGinn. 1985. Geology of microtidal coastal lagoons: Rhode Island. Marine Geology 93: 35–76.

    Article  Google Scholar 

  • Boumans, R., and J.W. Day Jr. 1993. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 16: 375–380.

    Article  Google Scholar 

  • Burns, C.J., M. Alber, and C.R. Alexander. 2021. Historical changes in the vegetated area of salt marshes. Estuaries and Coasts 44: 162–177.

    Article  Google Scholar 

  • Cahoon, D.R. 2006. A review of major storm impacts on coastal wetland elevation. Estuaries and Coasts 29 (6A): 889–898.

    Article  Google Scholar 

  • Cahoon, D.R. 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38: 1077–1084.

    Article  Google Scholar 

  • Cahoon, D.R., and G.R. Guntenspergen. 2010. Climate change, sea-level rise, and coastal wetlands. National Wetlands Newsletter 32 (1): 8–12.

    Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day Jr. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, and R.M. Knaus. 1996. Improved cryogenic coring device for sampling wetland soils. Journal of Sedimentary Research 66: 1026–1027.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002. A device for high precision measurement of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research 72: 734–739.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, C.T. Roman, J.P. Schmit, and D.E. Skidds. 2019. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuaries and Coasts 42: 1–15.

    Article  CAS  Google Scholar 

  • Campbell, A.D., and Y. Wang. 2020. Salt marsh monitoring along the mid-Atlantic coast by Google Earth Engine enabled time series. PloS One 15(2): e0229605. https://doi.org/10.1371/journal.pone.0229605. Accessed 28 Apr 2023.

  • Carey, J.C., K.B. Raposa, C. Wigand, and R.S. Warren. 2017. Contrasting decadal-scale changes in elevation and vegetation in two Long Island Sound salt marshes. Estuaries and Coasts 40: 651–661.

    Article  CAS  Google Scholar 

  • Carniello, L., A. Defina, and L. D’Alpaos. 2009. Morphological evolution of the Venice lagoon: Evidence from the past and trend for the future. Journal of Geophysical Research, Earth Surface. 114 (F04002). https://doi.org/10.1029/2008JF001157. Accessed 22 Nov 2022.

    Article  Google Scholar 

  • Crosby, S.C., A. Angermeyer, J.M. Adler, M.D. Bertness, L.A. Deegan, N. Sibinga, and H. Leslie. 2017. Spartina alterniflora biomass allocation and temperature: Implications for salt marsh persistence with sea-level rise. Estuaries and Coasts 40: 213–223.

    Article  CAS  Google Scholar 

  • Crotty, S.M., C. Angelini, and M.D. Bertness. 2017. Multiple stressors and the potential for synergistic loss of New England salt marshes. PLoS ONE 12(8): e0183058. https://doi.org/10.1371/journal.pone.0183058. Accessed 22 Nov 2022.

  • Day, J.W., L.D. Britsch, S.R. Hawes, G.P. Shaffer, D.J. Reed, and D. Cahoon. 2000. Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change. Estuaries 23: 425–438.

    Article  Google Scholar 

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B. Peterson, J.W. Fleeger, S. Fagherazzi, and W. Wollheim. 2012. Coastal eutrophication as a driver of marsh loss. Nature 490: 388–392.

    Article  CAS  Google Scholar 

  • Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences 98: 14218–14223.

    Article  CAS  Google Scholar 

  • Donnelly, J.P., J. Butler, S. Roll, M. Wengren, and T. Webb III. 2004. A backbarrier overwash record of intense storms from Brigantine, New Jersey. Marine Geology 210: 107–121.

    Article  Google Scholar 

  • Elsey-Quirk, T. 2016. Impact of Hurricane Sandy on salt marshes of New Jersey. Estuarine, Coastal and Shelf Science 183: 235–248.

    Article  Google Scholar 

  • Fagherazzi, S., G. Mariotti, P.L. Wiberg, and K.J. McGlathery. 2013. Marsh collapse does not require sea-level rise. Oceanography 26: 70–71.

    Article  Google Scholar 

  • FitzGerald, D.M., I. Buynevich, and B. Argow. 2006. Model of tidal inlet and barrier island dynamics in a regime of accelerated sea level rise. Journal of Coastal Research SI39: 789–795.

  • Ganju, N.K., Z. Defne, and S. Fahgerazzi. 2020. Are elevation and open-water conversion of salt marshes connected? Geophysical Research Letters 47: e2019GL086703. https://doi.org/10.1029/2019GL086703. Accessed 22 Nov 2022.

  • Ganju, N.K., Z. Defne, M.L. Kirwan, S. Fagherazzi, A. D’Alpaos, and L. Carniello. 2017. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications 8:14156. https://www.nature.com/articles/ncomms14156. Accessed 22 Nov 2022.

  • Gedan, K.B., B.R. Silliman, and M.D. Bertness. 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1: 117–141.

    Article  Google Scholar 

  • Godfrey. P.J. 1974. The role of overwash and inlet dynamics in the formation of salt marshes on North Carolina barrier islands. Pages 407–427 In Ecology of Halophytes, eds. R.J. Reimold and W.H. Queen, 407–427. New York: Academic Press.

  • Hapke, C.J., O. Brenner, R. Hehre, and B.J. Reynolds. 2013. Coastal change from Hurricane Sandy and the 2012–13 winter storm season – Fire Island, New York. U.S. Geological Survey Open-File Report 2013–1231, 37p. https://doi.org/10.3133/ofr20131231. Accessed 22 Nov 2022.

  • Hapke, C.J., T.R. Nelson, R.E. Henderson, O.T. Brenner, and J.L. Miselis. 2017. Morphologic evolution of the wilderness breach at Fire Island, New York – 2012–15. U.S. Geological Survey Open-File Report 2017–1116. 17p. https://doi.org/10.3133/ofr20171116. Accessed 22 Nov 2022.

  • Harrison, E.Z., and A.L. Bloom. 1977. Sedimentation rates on tidal salt marshes in Connecticut. Journal of Sedimentary Research 47: 1484–1490.

    Google Scholar 

  • Hartig, E.K., V. Gonitz, A. Kolker, F. Mushacke, and D. Fallon. 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands 22: 71–89.

    Article  Google Scholar 

  • Hein, C.J., M.S. Fenster, K.B. Gedan, J.R. Tabar, E.A. Hein, and T. DeMunda. 2021. Leveraging the interdependencies between barrier islands and backbarrier saltmarshes to enhance resilience to sea-level rise. Frontiers in Marine Science 8 (721904). https://doi.org/10.3389/fmars.2021.721904. Accessed 22 Nov 2022.

    Article  Google Scholar 

  • Hinrichs, C., C.N. Flagg, and R.E. Wilson. 2018. Great South Bay after Sandy: Changes in circulation and flushing due to New Inlet. Estuaries and Coasts 41: 2172–2190.

    Article  Google Scholar 

  • Johnson, C.S., K.G. Miller, J.V. Browning, R.E. Kopp, N.S. Khan, Y. Fan, S.D. Stanford, and B.P. Horton. 2018. The role of sediment compaction and groundwater withdrawal in local sea-level rise, Sandy Hook, New Jersey, USA. Quaternary Science Reviews 181: 30–42.

    Article  Google Scholar 

  • Kearney, M.S., A.S. Rogers, J.P.R.G. Townsend, E. Rizzo, D. Stutzer, J.C. Stevenson, and K. Sundberg. 2002. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos, Transactions of the American Geophysical Union 83: 173–178.

    Article  Google Scholar 

  • Kirwan, M.L., and G.R. Guntenspergen. 2010. Influence of tidal range on the stability of coastal marshland. Journal of Geophysical Research 115 (F02009). https://doi.org/10.1029/2009JF001400. Accessed 22 Nov 2022.

    Article  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60.

    Article  CAS  Google Scholar 

  • Kraft, J.C., E.A. Allen, D.P. Belknap, C.J. John, and E.M. Maurmeyer. 1979. Processes and morphologic evolution of an estuarine and coastal barrier system. Pages 149–183 In Barrier Islands From the Gulf of St. Lawrence to the Gulf of Mexico, ed. S. P. Leatherman, 149–183. New York: Academic Press.

  • Leatherman, S.P. 1979. Migration of Assateague Island, Maryland, by inlet and overwash processes. Geology 7: 104–107.

    Article  Google Scholar 

  • Leatherman, S.P. 1985. Geomorphic and stratigraphic analysis of Fire Island, New York. Marine Geology 63: 173–195.

    Article  Google Scholar 

  • Leatherman, S.P., and J.R. Allen, eds. 1985. Geomorphic analysis: Fire Island Inlet to Montauk Point, Long Island, New York. National Park Service Technical Report to the US Army Corps of Engineers, NY District.

  • Lentz, E., C. Hapke, H. Stockdon, and R. Hehre. 2013. Improving understanding of near-term barrier island evolution through multi-decadal assessment of morphologic change. Marine Geology 337: 125–139.

    Article  Google Scholar 

  • Lorenzo-Trueba, J., and G. Mariotti. 2017. Chasing boundaries and cascade effects in a coupled barrier-marsh-lagoon system. Geomorphology 290: 153–163.

    Article  Google Scholar 

  • Lynch, J.C., P. Hensel, and D.R. Cahoon. 2015. The surface elevation table and marker horizon technique: a protocol for monitoring wetland elevation dynamics. National Park Service, Fort Collins, CO. Natural Resources Report NPS/NCBN/NRR- 2015/1078. 22p. https://irma.nps.gov/DataStore/Reference/Profile/2225005. Accessed 22 Nov 2022.

  • Marani, M., A. D’Alpaos, L. Lanzoni, and M. Santalucia. 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters 38 (L21401). https://doi.org/10.1029/2011GL048995. Accessed 22 Nov 2022.

    Article  Google Scholar 

  • Morris, J.T., J. Lynch, K.A. Renken, S. Stevens, M. Tyrrell, and H. Plaisted. 2020. Tidal and hurricane impacts on saltmarshes in the northeastern coastal and barrier network: Theory and empirical results. Estuaries and Coasts 43: 1658–1671.

    Article  CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA). 2013. Service assessment --Hurricane/post-tropical cyclone Sandy, October 12–29, 2012. NOAA, National Weather Service, Silver Spring, MD. 46p (plus appendices). https://www.weather.gov/media/publications/assessments/Sandy13.pdf. Accessed 22 Nov 2022.

  • Nerem, R.S., B.D. Beckley, J.T. Fassullo, B.D. Hamlington, D. Masters, and G.T. Mitchum. 2018. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences 115: 2022–2025.

    Article  CAS  Google Scholar 

  • Niering, W.A., and R.S. Warren. 1980. Vegetation patterns and processes in New England salt marshes. BioScience 30: 301–307.

    Article  Google Scholar 

  • Nyman, J.A., C.R. Crozier, and R.D. DeLaune. 1995. Roles and patterns of hurricane sedimentation in an estuarine marsh landscape. Estuarine, Coastal and Shelf Science 40: 665–679.

    Article  CAS  Google Scholar 

  • Orson, R.A., and B.L. Howes. 1992. Salt marsh development studies at Waquoit Bay, Massachusetts: Influence of geomorphology on long-term plant community structure. Estuarine, Coastal and Shelf Science 35: 453–471.

    Article  Google Scholar 

  • Raposa, K.B., M. Bradley, C. Chaffee, N. Ernst, W. Ferguson, T.E. Kutcher, R.A. McKinney, K.M. Miller, S. Rasmussen, E. Tymkiw, and C. Wigand. 2022. Laying it on thick: Ecosystem effects of sediment placement on a microtidal Rhode Island salt marsh. Frontiers in Environmental Science 10 (939870). https://doi.org/10.3389/fenvs.2022.939870. Accessed 22 Nov 2022.

    Article  Google Scholar 

  • Raposa, K.B., M.L. Cole Ekberg, D.M. Burdick, N.T. Ernst, and S.C. Adamowicz. 2017a. Elevation change and the vulnerability of Rhode Island (USA) salt marshes to sea-level rise. Regional Environmental Change 17: 389–397.

    Article  Google Scholar 

  • Raposa, K.B., R.L.J. Weber, M.K. Ekberg, and W. Ferguson. 2017b. Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events. Estuaries and Coasts 40: 640–650.

    Article  CAS  Google Scholar 

  • Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42: 201–237.

    Article  Google Scholar 

  • Reed, D.J. 1995. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surface Processes and Landforms 20: 39–48.

    Article  Google Scholar 

  • Rocks, E.N., and S.M. Stevens. 2018. Northeast Coastal and Barrier Network salt marsh vegetation monitoring protocol implementation plan: version 1.0. National Park Service, Fort Collins, CO. Natural Resources Report NPS/NCBN/NRR – 2018/1790. 28p. https://irma.nps.gov/DataStore/Reference/Profile/2257074. Accessed 22 Nov 2022.

  • Roman, C.T., J.W. King, D.R. Cahoon, J.C. Lynch, and P.G. Appleby. 2007. Evaluation of marsh development processes at Fire Island National Seashore (New York): recent and historic perspectives. National Park Service, Northeast Region, Boston, MA. Technical Report NPS/NER/NRTR – 2007/089. 62p. https://irma.nps.gov/DataStore/Reference/Profile/2181170. Accessed 22 Nov 2022.

  • Roman, C.T., J.A. Peck, J.R. Allen, J.W. King, and P.G. Appleby. 1997. Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms, and sea-level rise. Estuarine, Coastal and Shelf Science 45: 717–727.

    Article  Google Scholar 

  • Roman, C.T. 2017. Salt marsh sustainability: Challenges during an uncertain future. Estuaries and Coasts 40: 711–716.

    Article  Google Scholar 

  • Russell, B.T., K.A. Cressman, J.P. Schmit, S. Shull, J.M. Rybczyk, and D.L. Frost. 2022. How should surface elevation table data be analyzed? A comparison of several commonly used analysis methods and one newly proposed approach. Environmental and Ecological Statistics 29: 359–391.

    Article  Google Scholar 

  • Saintilan, N., K.E. Kovalenko, G. Guntenspergen, K. Rogers, J.C. Lynch, D.R. Cahoon, C.E. Lovelock, D.A. Friess, E. Ashe, K.W. Krauss, N. Cormier, T. Spencer, J. Adams, J. Raw, C. Ibanez, F. Scarton, S. Temmerman, P. Meire, T. Maris, K. Thorne, J. Brazner, G.L. Chmura, T. Bowron, V.P. Gamage, K. Cressman, C. Endris, C. Marconi, P. Marcum, K. St. Laurent, W. Reay, K.B. Raposa, J.A. Garwood, and N. Khan. 2022. Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science 377: 523–527.

    Article  CAS  Google Scholar 

  • Sallenger, A.H., K.S. Doran, and P.A. Howd. 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2: 884–888.

    Article  Google Scholar 

  • Silliman, B.R., E.D. Grosholz, and M.D. Bertness, eds. 2009. Human impacts on salt marshes: A global perspective, 413p. Berkeley: University of California Press.

    Google Scholar 

  • Smith, S.M. 2015. Vegetation change in salt marshes of Cape Cod National Seashore (Massachusetts, USA) between 1984 and 2013. Wetlands 35: 127–136.

    Article  Google Scholar 

  • Strain, E.M.A., J. van Belzen, P. Comandini, J. Wong, T.J. Bouma, and L. Airoldi. 2017. The role of changing climate in driving the shift from perennial grasses to annual succulents in a Mediterranean saltmarsh. Journal of Ecology 105: 1374–1385.

    Article  Google Scholar 

  • Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and regional sea level rise scenarios for the United States: updated mean projections and extreme water level probabilities along U.S. coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://aambpublicoceanservice.blob.core.windows.net/oceanserviceprod/hazards/sealevelrise/noaa-nos-techrpt01-global-regional-SLR-scenarios-US.pdf. Accessed 22 Nov 2022.

  • Turner, R.E. 2004. Coastal wetland subsidence arising from local hydrologic manipulations. Estuaries 27: 265–272.

    Article  Google Scholar 

  • van Ormondt, M., T.R. Nelson, C.J. Hapke, and D. Roelvink. 2020. Morphodynamic modelling of the wilderness breach, Fire Island, New York. Part I: model set-up and validation. Coastal Engineering 157: 103621. https://doi.org/10.1016/j.coastaleng.2019.103621. Accessed 22 Nov 2022.

  • Walters, D., L.J. Moore, O.D. Vinent, S. Fagherazzi, and G. Mariotti. 2014. Interactions between barrier islands and backbarrier marshes affect island system response to sea level rise: Insights from a coupled model. Journal of Geophysical Research: Earth Surface 119 (2013–2031). https://doi.org/10.1002/2014JF003091. Accessed 22 Nov 2022.

    Article  Google Scholar 

  • Walters, D.C., and M.L. Kirwan. 2016. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise. Ecology and Evolution 6 (2948–2956). https://doi.org/10.1002/ece3.2024. Accessed 22 Nov 2022.

    Article  Google Scholar 

  • Warren, R.S., and W.A. Niering. 1993. Vegetation change on a northeast tidal marsh: Interaction of sea-level rise and marsh accretion. Ecology 74: 96–103.

    Article  Google Scholar 

  • Wasson, K., N.K. Ganju, Z. Defne, C. Endris, T. Elsey-Quirk, K.M. Thorne, C.M. Freeman, G. Guntenspergen, D.J. Nowacki, and K.B. Raposa. 2019. Understanding tidal marsh trajectories: evaluation of multiple indicators of marsh persistence. Environmental Research Letters 14: 124073. https://doi.org/10.1088/1748-9326/ab5a94. Accessed 22 Nov 2022.

  • Watson, E.B., C. Wigand, E.W. Davey, H.M. Andrews, J. Bishop, and K.B. Raposa. 2017. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England. Estuaries and Coasts 40: 662–681.

    Article  CAS  Google Scholar 

  • Webb, E.L., D. Friess, K. Krauss, D.R. Cahoon, G. Guntenspergen, and J. Phelps. 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.

    Article  Google Scholar 

  • Weston, N.B. 2014. Declining sediments and rising seas: An unfortunate convergence for tidal wetlands. Estuarine Coastal and Shelf Science 37: 1–23.

    Google Scholar 

  • Wigand, C., C.T. Roman, E. Davey, M. Stolt, R. Johnson, A. Hanson, E.B. Watson, S.B. Moran, D.R. Cahoon, J.C. Lynch, and P. Rafferty. 2014. Below the disappearing marshes of an urban estuary: Historic nitrogen trends and soil structure. Ecological Applications 24: 633–649.

    Article  Google Scholar 

  • Wong, K.C., and R.E. Wilson. 1984. Observations of low-frequency variability in Great South Bay and relations to atmospheric forcing. Journal of Physical Oceanography 14: 1893–1900.

    Article  Google Scholar 

  • Yeates, A.G., J.B. Grace, J.H. Olker, G.R. Guntenspergen, D.R. Cahoon, S. Adamowicz, S.C. Anisfeld, N. Barrett, A. Benzercry, L. Blum, R.R. Christian, J. Grzyb, E. Kracauer Hartig, K. Hines Leo, S. Lerberg, J.C. Lynch, N. Maher, J.P. Megonigal, W. Reay, D. Siok, A. Starke, V. Turner and S. Warren. 2020. Hurricane Sandy effects on coastal marsh elevation change. Estuaries and Coasts 43: 1640–1657.

    Article  Google Scholar 

  • Zeigler, S.L., B. T. Gutierrez, E. E. Lentz, N.G. Plant, E.J. Sturdivant, and K.S. Doran. 2022. Predicted sea-level rise-driven biogeomorpholgical changes on Fire Island, New York: implications for people and plovers. Earth’s Future 10: e2021EF002436. https://doi.org/10.1029/2021EF002436. Accessed 9 May 2023.

  • Zervas, C., S. Gill, and W. Sweet. 2013. Estimating vertical land motion from long-term tide gauge records. NOAA Technical Report NOS CO-OPS 065. National Oceanic and Atmospheric Administration, National Ocean Service, Center for Operational Oceanographic Products and Services, Silver Spring, MD, 22 pp. https://tidesandcurrents.noaa.gov/publications/Technical_Report_NOS_CO-OPS_065.pdf. Accessed 1 May 2023.

Download references

Acknowledgements

Thanks are extended to the staff at Fire Island National Seashore for providing logistical and field support throughout the study, with special acknowledgement to Michael Bilecki, Jordan Raphael, and Patti Rafferty. Many individuals, too many to list here, provided assistance with the field sampling, including students, National Park Service and U. S. Geological Survey (USGS) colleagues, and others — many thanks to all. Charles Flagg (Stony Brook University) is thanked for providing oblique aerial images of the Wilderness Area inlet. Michael Bilecki and anonymous USGS reviewers are thanked for their comments on an earlier draft of this manuscript. Thanks are also extended to the journal’s peer reviewers.

Funding

Funding was provided by several National Park Service programs (Natural Resource Preservation Program, Northeast Coastal and Barrier Network, and North Atlantic Coast Cooperative Ecosystem Studies Unit) and the USGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. Roman.

Ethics declarations

Disclosure

The findings and conclusions in this paper are those of the authors and do not necessarily reflect the views of the National Park Service. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Additional information

Communicated by Stijn Temmerman

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 44 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roman, C.T., Lynch, J.C. & Cahoon, D.R. Twenty-Year Record of Salt Marsh Elevation Dynamics in Response to Sea-Level Rise and Storm-Driven Barrier Island Geomorphic Processes: Fire Island, NY, USA. Estuaries and Coasts (2023). https://doi.org/10.1007/s12237-023-01234-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-023-01234-6

Keywords

Navigation