Skip to main content

Advertisement

Log in

Quantifying Multi-Decadal Salt Marsh Surface Elevation and Geodetic Change: The South Carolina Geological Survey SET Network

  • Special Issue: Wetland Elevation Dynamics
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In 1998, the South Carolina Geological Survey (SCGS) established a state-wide coastal Surface Elevation Table (SET) network to document geodetic elevation changes (uplift or subsidence) at different spatial resolutions, quantify elevation change on salt marsh platforms over time, and compare the rate of surface elevation change (REC) at each station to the rate of local relative sea-level rise (RSLR). Analysis of short- and long-term (4 to 22 + year) datasets from 21 SCGS SET stations shows that rates vary widely, from -2.30 to + 10.17 mm/yr. The 22 + year length of record on the oldest SCGS SET datasets reveal non-linear REC trends, with short-term trends often above or below the long-term trendline. When compared to a 100-year RSLR trend of 3.36 ± 0.19 mm/year at NOAA gauge 8,665,530 (Cooper River Mouth, Charleston Harbor), 11 stations had higher rates, five were lower, and five had overlapping confidence intervals. With a shorter 23-year record, only two stations would have higher rates. All SCGS SET stations are situated high in the tidal frame. There are no discernible associations between SET positions relative to mean high water (MHW) and REC. Long-term (1998–2021) geodetic elevation data available for six of the original stations indicate some geodetic elevation loss. Data for these original stations, and nine upland benchmarks surveyed in 2022, indicate possible impacts from the underlying Garner-Edisto fault. These findings have implications for other SET programs using similar methods to quantify vertical change over decadal time spans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The supporting data related to this study are available from the corresponding author, WRD, III, upon request.

References

  • Belknap, D.F., and J.T. Kelley. 2021. Salt marsh distribution, vegetation, and evolution. In Salt Marshes, ed. D.M. FitzGerald and Z.J. Hughes, 9–30. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Bertness, M.D. 1991. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology 72 (1): 138–148.

    Article  Google Scholar 

  • Best, U.S., M. Van der Wegen, J. Dijkstra, P.W.J.M. Willemsen, B.W. Borsje, and D.J. Roelvink. 2018. Do salt marshes survive sea level rise? Modeling wave action, morphodynamics and vegetation dynamics. Environmental Modeling & Software 109: 152–166.

    Article  Google Scholar 

  • Brooks, H., I. Möller, S. Carr, C. Chirol, E. Christie, B. Evans, K.L. Spencer, T. Spencer, and K. Royse. 2021. Resistance of salt marsh substrates to near-instantaneous hydrodynamic forcing. Earth Surface Processes and Landforms 46 (1): 67–88.

    Article  Google Scholar 

  • Cahoon, D.R., and J.C. Lynch. 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A. Mangroves and Salt Marshes 1 (3): 173–186.

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R.D. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research 72 (5): 734–739.

  • Cahoon, D.R., J.C. Lynch, C.T. Roman, J.P. Schmit, and D.E. Skidds. 2019. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuaries and Coasts 42 (1): 1–15.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., D.J. Reed, J.W. Day, Jr., G.D. Steyer, R.M. Boumans, J.C. Lynch, D. McNally, and N. Latif. 1995. The influence of Hurricane Andrew on sediment distribution in Louisiana coastal marshes. Journal of Coastal Research 21: 280–294.

  • Carey, J.C., K.B. Raposa, C. Wigand, and R.S. Warren. 2017. Contrasting decadal-scale changes in elevation and vegetation in two Long Island Sound salt marshes. Estuaries and Coasts 40 (3): 651–661.

    Article  CAS  Google Scholar 

  • Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine, Coastal and Shelf Science 50 (3): 315–331.

    Article  Google Scholar 

  • Colquhoun, D.J., I.D. Woolen, D. van Nieuwenhuise, G.G. Padgett, R.W. Oldham, D.C. Boylan, J.W. Bishop, and P.D. Powell. 1983. Surface and subsurface stratigraphy, structure and aquifers of the South Carolina coastal plain. Columbia, South Carolina: University of South Carolina, Department of Geology.

    Google Scholar 

  • Doar, W.R., III and E.E. Koch. 2004. Geology of the ACE Basin, Beaufort, Charleston, and Colleton Counties, South Carolina. South Carolina Geological Survey Open-File Report 150. 1 color plate.

  • Doar, W.R., III, K. Luciano, and B. Czwartacki. 2018. Mapping the marsh surface elevation change resulting from Hurricane Irma in South Carolina. In: Geological Society of America Abstracts with Programs 50 (3).

  • Doar, W.R., III, K.E. Luciano, B. Czwartacki, and T. Arrington. 2019. Geomorphological changes to intertidal marshes in 25 different microenvironments in South Carolina. In: 2019 CERF Biennial Conference. CERF, 2019.

  • Doar, W.R., III and K.E. Luciano. 2022. The south carolina geological survey surface elevation table (SET) network 1998–2022. South Carolina Geological Survey Open-File Report 248. 57 pages.

  • Donnelly, J.P., P. Cleary, P. Newby, and R. Ettinger. 2004. Coupling instrumental and geological records of sea-level change: Evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophysical Research Letters 31 (5): L05203.

    Article  Google Scholar 

  • Erwin, R.M., D.R. Cahoon, D.J. Prosser, G.M. Sanders, and P. Hensel. 2006. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the Mid-Atlantic coast, USA, with implications to waterbirds. Estuaries and Coasts 29 (1): 96–106.

    Article  Google Scholar 

  • Fagherazzi, S., M.L. Kirwan, S.M. Mudd, G.R. Guntenspergen, S. Temmerman, A. D’Alpaos, J. Van De Koppel, J.M. Rybczyk, E. Reyes, C. Craft, and J. Clough. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics 50 (1): 1–28.

    Article  Google Scholar 

  • Fitzgerald, D.M. 1984. Interactions between the ebb-tidal delta and landward shoreline; Price Inlet, South Carolina. Journal of Sedimentary Research 54 (4): 1303–1318.

    Google Scholar 

  • FitzGerald, D.M., and Z. Hughes. 2019. Marsh processes and their response to climate change and sea-level rise. Annual Review of Earth and Planetary Sciences 47: 481–517.

    Article  CAS  Google Scholar 

  • French, J.R., and T. Spencer. 1993. Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk. UK. Marine Geology 110 (3–4): 315–331.

    Article  Google Scholar 

  • Ganju, N.K., M.L. Kirwan, P.J. Dickhudt, G.R. Guntenspergen, D.R. Cahoon, and K.D. Kroeger. 2015. Sediment transport-based metrics of wetland stability. Geophysical Research Letters 42 (19): 7992–8000.

    Article  Google Scholar 

  • Gardner, L.R., and D.E. Porter. 2001. Stratigraphy and geologic history of a southeastern salt marsh basin, North Inlet, South Carolina, USA. Wetlands Ecology and Management 9 (5): 371–385.

    Article  Google Scholar 

  • Geoghegan, C.E., S.E. Breidenbach, D.R. Lokken, K.L. Fancher, and P. Hensel. 2008. Procedures for connecting SET bench marks to the NSRS. NOAA Technical Report NOS NGS‐61. National Oceanic and Atmospheric Administration, Silver Spring, Maryland, USA.

  • Griffin, M.M. 1981. Feldspar distributions in river, delta, and barrier sands of central South Carolina. University of South Carolina, Master’s thesis.

  • Hayes, M.O. 1994. The Georgia bight barrier system. In Geology of Holocene barrier island systems, ed. R.A. Davis, 233–304. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Hayes, M.O., and J. Michel. 2007. A coast for all seasons: A naturalist’s guide to the coast of South Carolina. Columbia, SC: Pandion Books.

    Google Scholar 

  • Hayes, M.O., T.F. Moslow, and D.K. Hubbard. 1979. Beach erosion in South Carolina. NOAA Coastal Zone Information Center Publication 15404, United States Government Printing Office.

  • Hopkinson, C.S., W.J. Cai, and H. Xinping. 2012. Carbon sequestration in wetland dominated coastal systems – a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability 4 (2): 186–194.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the IPCC. Cambridge University Press, Cambridge, UK, 881 pp.

  • Karegar, M.A., T.H. Dixon, and S.E. Engelhart. 2016. Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data. Geophysical Research Letters 43 (7): 3126–3133.

    Article  Google Scholar 

  • Kirwan, M.L., and A.B. Murray. 2008. Ecological and morphological response of brackish tidal marshland to the next century of sea level rise: Westham Island. British Columbia. Global and Planetary Change 60 (3–4): 471–486.

    Article  Google Scholar 

  • Kirwan, M., and S. Temmerman. 2009. Coastal marsh response to historical and future sea-level acceleration. Quaternary Science Reviews 28 (17–18): 1801–1808.

    Article  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6 (3): 253–260.

    Article  Google Scholar 

  • Kraft, J.C. 1971. Sedimentary facies patterns and geologic history of a Holocene marine transgression. Geological Society of America Bulletin 82 (8): 2131–2158.

    Article  Google Scholar 

  • Landin, M.C. 1991. Growth habits and other considerations of smooth cordgrass, Spartina alterniflora Loisel. In Spartina Workshop Record, ed. T.F. Mumford, P. Peyton, J.R. Sayce, and S. Harbell, 15–20. Seattle: Washington Sea Grant Program, University of Washington.

  • Lapine, L.A. and M.J. Wellslager. 2007. GPS+ GLONASS for precision: South Carolina’s GNSS virtual reference network. Inside GNSS: p 50–57.

  • Lefeuvre, J.C., P. Laffaille, E. Feunteun, V. Bouchard, and A. Radureau. 2003. Biodiversity in salt marshes: From patrimonial value to ecosystem functioning. The case study of the Mont-Saint-Michel Bay. Comptes Rendus Biologies 326: 125–131.

    Article  Google Scholar 

  • Leonard, L.A. 1997. Controls of sediment transport and deposition in an incised mainland marsh, southeastern North Carolina. Wetlands 17 (2): 263–274.

    Article  Google Scholar 

  • Leonardi, N., I. Carnacina, C. Donatelli, N. Ganju, A. Plater, M. Schuerch, and S. Temmerman. 2017. Dynamic interactions between coastal storms and salt marshes: A review. Geomorphology 301: 92–107.

    Article  Google Scholar 

  • Lynch, J.C., P. Hensel, and D.R. Cahoon. 2015. The surface elevation table and marker horizon technique: a protocol for monitoring wetland elevation dynamics. Natural resource report NPS/NCBN/NRR – 2015/1078. National Park Service, Fort Collins, Colorado, USA.

  • Maybin, A.H., III, Clendenin, C.W., Jr., and M.D. Fields. 1998. Structural features of South Carolina. South Carolina Department of Natural Resources Geological Survey, General Geologic Map Series GGMS-4. 1 color plate.

  • McIvor, A.L., T. Spencer, I. Möller, and M. Spalding. 2013. The response of mangrove soil surface elevation to sea level rise. Natural Coastal Protection Series: Report 3. Cambridge Coastal Research Unit Working Paper 42. ISSN 2050–7941.

  • McKee, K.L., and W.H. Patrick. 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: A review. Estuaries 11 (3): 143–151.

    Article  Google Scholar 

  • Möller, I., T. Spencer, J.R. French, D.J. Leggett, and M. Dixon. 1999. Wave trans-formation over salt marshes: A field and numerical modeling study from North Norfolk, England. Estuarine, Coastal and Shelf Science 49 (3): 411–426.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877.

    Article  Google Scholar 

  • Moslow, T.F., and R.S. Tye. 1985. Recognition and characterization of Holocene tidal inlet sequences. Marine Geology 63 (1–4): 129–151.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA). 2021a. Tides and currents products. https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8665530. Accessed 12 Oct 2022.

  • National Oceanic and Atmospheric Administration (NOAA). 2021b. Tides and currents products. https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8661070. Accessed 11 Jan 2023.

  • National Oceanic and Atmospheric Administration (NOAA). 2021c. Tides and currents products. https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8670870. Accessed 11 Jan 2022.

  • Niering, W.A., and S.R. Warren. 1980. Vegetation patterns and processes in New England salt marshes. BioScience 30 (5): 301–307.

    Article  Google Scholar 

  • Orson, R.A., R.S. Warren, and W.A. Niering. 1998. Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuarine, Coastal and Shelf Science 47: 419–429.

    Article  Google Scholar 

  • Pendleton, L., D. Donato, B. Murray, S. Crooks, W.A. Jenkins, S. Sifleet, C. Craft, J. Fourqurean, J.B. Kauffman, N. Marba, P. Megonigal, E. Pidgeon, D. Herr, D. Gofdon, and A. Baldera. 2012. Estimating global blue carbon emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7: e43542.

    Article  CAS  Google Scholar 

  • Peltier, W.R. 2004. Global glacial isostatic adjustment: Palaeogeodetic and space-geodetic tests of the ICE-4G (VM2) model. Journal of Quaternary Science 17 (5–6): 491–510.

    Google Scholar 

  • Raposa, K.B., M.L.C. Ekberg, D.M. Burdick, N.T. Ernst, and S.C. Adamowicz. 2017. Elevation change and the vulnerability of Rhode Island (USA) salt marshes to sea-level rise. Regional Environmental Change 17 (2): 89–397.

    Article  Google Scholar 

  • Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42 (2): 201–237.

    Article  Google Scholar 

  • Sanger, D., and C. Parker. 2016. Guide to the salt marshes and tidal creeks of the Southeastern United States. Columbia, SC: South Carolina Department of Natural Resources.

  • South Carolina Department of Natural Resources (SCDNR). 1999. 1999 Digital Orthophoto Quarter-Quadrangles (DOQQ) https://www.dnr.sc.gov/gis/descdoqq.html. Accessed 23 Nov 2022.

  • Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak. 2022. Global and regional sea level rise scenarios for the united states: Updated mean projections and extreme water level probabilities along U.S. coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf

  • Törnqvist, T.E., D.R. Cahoon, J.T. Morris, and J.W. Day. 2021. Coastal wetland resilience, accelerated sea-level rise, and the importance of timescale. AGU Advances 2: e2020AV000334. https://doi.org/10.1029/2020AV000334

  • Tweel, A.W., and R.E. Turner. 2014. Contribution of tropical cyclones to the sediment budget for coastal wetlands in Louisiana, USA. Landscape Ecology 29: 1083–1094.

    Article  Google Scholar 

  • White, S.A., I. Jeong, K.W. Hess, J. Wang, and E.P. Myers. 2016. An assessment of the revised VDATUM for eastern Florida, Georgia, South Carolina, and North Carolina. NOAA Technical Memorandum NOS 38. National Oceanic and Atmospheric Administration, Silver Spring, Maryland, USA.

  • Yeates, A.G., J.B. Grace, J.H. Olker, G.R. Guntenspergen, D.R. Cahoon, S. Adamowicz, S.C. Anisfeld, N. Barrett, A. Benzecry, L. Blum, and R.R. Christian. 2020. Hurricane Sandy effects on coastal marsh elevation change. Estuaries and Coasts 43: 1640–1657.

    Article  Google Scholar 

  • Zervas, C., S. Gill, and W. Sweet. 2013. Estimating vertical land motion from long-term tide gauge records. NOAA Technical Report NOS CO-OPS 065. NOAA NOS Center for Operational Oceanographic Products and Services, Silver Spring, Maryland, USA.

  • Zilkoski, D., J. D’Onofrio, and S. Frakes. 1997. Guidelines for establishing GPS-derived ellipsoid heights (Standards: 2cm and 5cm). Version 4.3. NOAA Technical Memorandum NOS NGS-58. National Oceanic and Atmospheric Administration, Silver Spring, Maryland, USA.

Download references

Acknowledgements

The authors acknowledge and thank those who have assisted with station installation and data collection over the life of the project: C.W. Clendenin, Jr., C. Zemp, M. McKenzie, J. Koch, R. Jones, B. Mixon, M. Scott, A. Kitt, K. Benton, J. Williams, F. Caruccio, T. Herford, G. Lennon, J. Robinson, B. Czwartacki, R. Morrow, M. King, M. Henderson, T. Arrington, E. Koch, E. Cook, A. Wykel, Z. Zelaya, J. Suttles, M. Georgopulos, J. Smoak, R. McKeown, R. Woods, C. Graffio, and J. Gentry. Additional thanks to R. Hoenstine and J. Ladner, formerly with the Florida Geological Survey (FGS), for their early mentoring, and to H. Means (also with FGS) for assistance with locating archived SET data. The South Carolina Geodetic Survey, especially R. Woods, J. Smoak, and M. Wellslager, were instrumental throughout the project. The authors would also like to acknowledge and remember C.W. Clendenin, P. Maier, and J. Smoak for their vision to start the project, support of the work in the ACE Basin NERR, and for numerous hours of geodetic work on the stations, respectively. We appreciate the feedback and comments provided by B. Czwartacki, C.S. Howard, and A. Tweel. The document was greatly improved by comments and suggestions from an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Doar, III.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Mead Allison

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 209 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doar,, W.R., Luciano, K.E. Quantifying Multi-Decadal Salt Marsh Surface Elevation and Geodetic Change: The South Carolina Geological Survey SET Network. Estuaries and Coasts (2023). https://doi.org/10.1007/s12237-023-01290-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-023-01290-y

Keywords

Navigation