Skip to main content

Advertisement

Log in

Can mangroves keep pace with contemporary sea level rise? A global data review

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Coastal vegetated wetlands such as mangrove forests provide multiple ecosystem services, though are potentially threatened by contemporary accelerated sea level rise (SLR), in addition to other immediate threats such as agriculture and coastal development. Several studies have revealed that mangroves are able to adapt to, and keep pace with local relative SLR through vertical surface elevation change (SEC), however data are lacking, with often only surface accretion rate (SAR) data available. We systematically review published studies of SEC and SAR from globally distributed monitoring sites using meta-analysis, and compare them with the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) SLR scenarios. Hydro-geomorphic setting plays an important role, with basin mangroves potentially less vulnerable to SLR through land building processes. We find that SAR in both basin and fringe mangroves can cope with low SLR scenario (RCP 2.6) throughout the 100 years projection period. However, SAR can only keep pace with high SLR scenario (RCP 8.5) up to year 2070 and 2055 in basin and fringe mangrove settings respectively. These were associated with potential sediment accumulation of 41 cm and 29 cm respectively from the baseline. Mangrove degradation promoted lowering trends of SEC, while mangrove management such as rehabilitation practice stimulated positive trends of SEC. Mangrove ecosystems may be vulnerable to contemporary SLR in small island locations such as the Caribbean, East Africa and parts of the Indo-Pacific that are dominated by fringe mangroves and where SEC cannot keep pace with both low and high IPCC AR5 SLR scenarios. A global expansion of current mangrove surface elevation monitoring effort is urgently needed in order to better assess the vulnerability of mangroves, and the factors affecting their resiliency in the face of rising sea levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adame MF, Neil D, Wright SF, Lovelock CE (2010) Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuar Coast Shelf Sci 86(1):21–30

    Article  Google Scholar 

  • Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13. doi:10.1016/j.ecss.2007.08.024

    Article  Google Scholar 

  • Balke T, Friess DA (2015) Geomorphic knowledge for mangrove restoration: a pan-tropical categorization. Earth Surf Proc Land. doi:10.1002/esp.3841

    Google Scholar 

  • Ball MC (1988) Ecophysiology of mangroves. Trees 2:129–142. doi:10.1007/BF00196018

    Article  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C et al (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193. doi:10.1890/10-1510.1

    Article  Google Scholar 

  • Biostat (2011) Released 2011. Comprehensive meta-analysis, version 2.2.064. Biostat, Englewood

  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Wiley, Chichester doi:10.1002/9780470743386

  • Boumans RMJ, Day JW (1993) High-precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 16:375–380. doi:10.2307/1352509

    Article  Google Scholar 

  • Cahoon DR (2006) A review of major storm impacts on coastal wetland elevations. Estuaries Coasts 29:889–898

    Article  Google Scholar 

  • Cahoon DR (2014) Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries Coasts. doi:10.1007/s12237-014-9872-8

    Google Scholar 

  • Cahoon DR, Lynch JC (1997) Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves Salt Marshes 1(3):173–186

    Article  Google Scholar 

  • Cahoon DR, Reed DJ, Day JW (1995) Estimating shallow subsidence in microtidal salt marshes of the southeastern United-States—Kaye and Barghoorn revisited. Mar Geol 128:1–9. doi:10.1016/0025-3227(95)00087-F

    Article  Google Scholar 

  • Cahoon DR, Lynch JC, Perez BC et al (2002) High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J Sediment Res 72:734–739. doi:10.1306/020702720734

    Article  CAS  Google Scholar 

  • Cahoon DR, Hensel P, Rybczyk J et al (2003) Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J Ecol 91:1093–1105. doi:10.1046/j.1365-2745.2003.00841.x

    Article  Google Scholar 

  • Cahoon DR, Hensel PF, Spencer T et al (2006) Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. In: Verhoeven JTA, Beltman D, Bobbink R, Whigham DF (eds) Wetlands and natural resource management: ecological studies. Springer, Berlin, pp 271–292

    Chapter  Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173. doi:10.1146/annurev-marine-120308-081105

    Article  Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602. doi:10.1007/s10712-011-9119-1

    Article  Google Scholar 

  • Darling ES, McClanahan TR, Côté IM (2010) Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv Lett 3(2):122–130

    Article  Google Scholar 

  • Day JW, Rybczyk J, Scarton F et al (1999) Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: a field and modelling approach. Estuar Coast Shelf Sci 49:607–628. doi:10.1006/ecss.1999.0522

    Article  Google Scholar 

  • Ellison JC (2014) Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetl Ecol Manag. doi:10.1007/s11273-014-9397-8

    Google Scholar 

  • FAO (2007) The world’s mangroves 1980–2005. FAO For Pap 153:89

    Google Scholar 

  • Friess DA, Krauss KW, Horstman EM et al (2012) Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol Rev Camb Philos Soc 87:346–366. doi:10.1111/j.1469-185X.2011.00198.x

    Article  PubMed  Google Scholar 

  • Friess DA, Phelps J, Garmendia E, Gomes-Baggethun E (2015) Payments for Ecosystem Services (PES) in the face of external biophysical stressors. Glob Environ Change 30:31–42

    Article  Google Scholar 

  • Gilman E, Ellison J, Coleman R (2007) Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environ Monit Assess 124:105–130. doi:10.1007/s10661-006-9212-y

    Article  PubMed  Google Scholar 

  • Giri C, Muhlhausen J (2008) Mangrove forest distributions and dynamics in Madagascar (1975–2005). Sensors 8(4):2104–2117

    Article  PubMed Central  Google Scholar 

  • Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA (2008) Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J Biogeogr 35(3):519–528

    Article  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL et al (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159. doi:10.1111/j.1466-8238.2010.00584.x

    Article  Google Scholar 

  • Giri C, Long J, Abbas S, Murali RM, Qamer FM, Pengra B, Thau D (2015) Distribution and dynamics of mangrove forests of South Asia. J Environ Manage 148:101–111

    Article  PubMed  Google Scholar 

  • Howe AJ, Rodríguez JF, Saco PM (2009) Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuar Coast Shelf Sci 84:75–83. doi:10.1016/j.ecss.2009.06.006

    Article  CAS  Google Scholar 

  • Hutchinson J, Manica A, Swetnam R, Balmford A, Spalding M (2014) Predicting global patterns in mangrove forest biomass. Conserv Lett 7:233–240

    Article  Google Scholar 

  • IBM Corp. (2010) Released 2010. IBM SPSS Statistics for Windows, version 19.0. IBM Corp., Armonk

  • Ilstedt U, Malmer A, Verbeeten E, Murdiyarso D (2007) The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. For Ecol Manag 251:45–51. doi:10.1016/j.foreco.2007.06.014

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2013) Climate change: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jardine S, Siikamaki JV (2014) A global predictive model of carbon in mangrove soils. Environ Res Lett 9:104013

    Article  Google Scholar 

  • Krauss KW, Allen JA, Cahoon DR (2003) Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar Coast Shelf Sci 56:251–259. doi:10.1016/s0272-7714(02)00184-1

    Article  Google Scholar 

  • Krauss KW, Keeland BD, Allen JA et al (2007) Effects of season, rainfall, and hydro-geomorphic setting on mangrove tree growth in Micronesia. Biotropica 39(2):161–170

    Article  Google Scholar 

  • Krauss KW, Cahoon DR, Allen JA et al (2010) Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of Micronesia. Ecosystems 13:129–143. doi:10.1007/s10021-009-9307-8

    Article  Google Scholar 

  • Krauss KW, Mckee KL, Lovelock CE et al (2014) How mangrove forests adjust to rising sea level. New Phytol 202:19–34. doi:10.1111/nph.12605

    Article  PubMed  Google Scholar 

  • Kumara MP, Jayatissa LP, Krauss KW et al (2010) High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164:545–553. doi:10.1007/s00442-010-1705-2

    Article  CAS  PubMed  Google Scholar 

  • Lang’at JKS, Kairo JG, Mencuccini M et al (2014) Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS ONE 9:e107868. doi:10.1371/journal.pone.0107868

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Primavera JH, Dahdouh-Guebas F et al (2014) Ecological role and services of tropical mangrove ecosystems: a reassessment. Glob Ecol Biogeogr 23:726–743. doi:10.1111/geb.12155

    Article  Google Scholar 

  • Lovelock CE, Sorrell BK, Hancock N et al (2010) Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 13(3):437–451. doi:10.1007/s10021-010-9329-2

    Article  CAS  Google Scholar 

  • Lovelock CE, Bennion V, Grinham A, Cahoon DR (2011) The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14:745–757. doi:10.1007/s10021-011-9443-9

    Article  CAS  Google Scholar 

  • Lovelock CE, Adame MF, Bennion V et al (2013) Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and saltmarshes of south east Queensland, Australia. Estuar Coasts 37:763–771. doi:10.1007/s12237-013-9702-4

    Article  Google Scholar 

  • Lovelock CE, Adame MF, Bennion V et al (2015) Sea level and turbidity controls on mangrove soil surface elevation change. Estuar Coast Shelf Sci 153:1–9. doi:10.1016/j.ecss.2014.11.026

    Article  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • McKee KL (2011) Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar Coast Shelf Sci 91:475–483. doi:10.1016/j.ecss.2010.05.001

    Article  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556. doi:10.1111/j.1466-8238.2007.00317.x

    Article  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT et al (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877. doi:10.2307/3072022

    Article  Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. doi:10.1126/science.1185782

    Article  CAS  PubMed  Google Scholar 

  • Oliver TSN, Rogers K, Chafer CJ, Woodroffe CD (2012) Measuring, mapping and modelling: an integrated approach to the management of mangrove and saltmarsh in the Minnamurra River estuary, southeast Australia. Wetl Ecol Manag 20:353–371. doi:10.1007/s11273-012-9258-2

    Article  Google Scholar 

  • Primavera JH, Esteban JMA (2008) A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetl Ecol Manag 16:345–358. doi:10.1007/s11273-008-9101-y

    Article  Google Scholar 

  • Rogers K, Saintilan N, Cahoon D (2005) Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia. Wetl Ecol Manag 13:587–598. doi:10.1007/s11273-004-0003-3

    Article  Google Scholar 

  • Rogers K, Wilton KM, Saintilan N (2006) Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuar Coast Shelf Sci 66:559–569. doi:10.1016/j.ecss.2005.11.004

    Article  Google Scholar 

  • Rogers K, Saintilan N, Woodroffe CD (2014) Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: implications for coastal wetland response to climate change. Estuar Coast Shelf Sci 149:46–56. doi:10.1016/j.ecss.2014.07.009

    Article  Google Scholar 

  • Spencer T, Friess DA, Moller I et al (2012) Surface elevation change in natural and re-created intertidal habitats, eastern England, UK, with particular reference to Freiston Shore. Wetl Ecol Manag 20:9–33. doi:10.1007/s11273-011-9238-y

    Article  Google Scholar 

  • Stokes DJ, Healy TR, Cooke PJ (2010) Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand. J Coast Res 261:113–122. doi:10.2112/08-1043.1

    Article  Google Scholar 

  • Watson JG (1928) Mangrove forests of the Malay Peninsula. Malayan Forest Records No. 6. Forest Department, Kuala Lumpur

  • Webb EL, Friess DA, Krauss KW et al (2013) A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat Clim Change 3:458–465. doi:10.1038/nclimate1756

    Article  Google Scholar 

  • Whelan KRT, Smith TJ, Cahoon DR et al (2005) Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth. Estuaries 28:833–843. doi:10.1007/Bf02696013

    Article  Google Scholar 

  • Whelan KRT, Smith TJ, Anderson GH, Ouellette ML (2009) Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29:16–23

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the United States Agency for International Development (contract No. MTO 069018) to the Sustainable Wetlands Adaptation and Mitigation Program (SWAMP)—a collaborative activity between the Center for International Forestry Research (CIFOR) and the United States Forest Service (USFS)—International Program. DAF acknowledges the Department of Geography, National University of Singapore (R-109-000-141-133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigit D. Sasmito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasmito, S.D., Murdiyarso, D., Friess, D.A. et al. Can mangroves keep pace with contemporary sea level rise? A global data review. Wetlands Ecol Manage 24, 263–278 (2016). https://doi.org/10.1007/s11273-015-9466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-015-9466-7

Keywords

Navigation