Skip to main content

Advertisement

Log in

How Plants Influence Resilience of Salt Marsh and Mangrove Wetlands to Sea-Level Rise

  • Review Paper
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

This review evaluates the importance of plants and associated biological processes in determining the vulnerability of coastal wetlands to sea-level rise. Coastal wetlands occur across a broad sedimentary continuum from minerogenic to biogenic, providing an opportunity to examine the relative importance of biological processes in wetland resilience to sea-level rise. We explore how plants influence sediment accretion, elevation capital (vertical position in the tidal frame), and compaction or erosion of deposited material. We focus on salt marsh and mangrove wetlands, which occupy a similar physiographic niche and display similar physical and biological controls on resilience to sea-level rise. In both habitats, plants stabilize emergent mudflats and help sustain the wetland position in the tidal frame relative to ocean height through both surface and subsurface process controls on soil elevation. Plants influence soil elevations by modifying (1) mineral sediment deposition and retention, (2) organic matter contributions to soil volume, and (3) resistance to compaction and erosion. Recognition of the importance of plants in coastal wetland resilience to sea-level rise is key to accurate predictions about the future fate of salt marshes and mangrove forests and for development of effective management and restoration plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam, P. 1990. Saltmarsh ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Adam, P. 2019. Salt marsh restoration. In Coastal wetlands: An integrated ecosystem approach, ed. G.M.E. Perillo, E. Wolanski, D.R. Cahoon, and C.S. Hopkinson, 817–861. Amsterdam: Elsevier.

    Google Scholar 

  • Adame, M.F., D. Neil, S.F. Wright, and C.E. Lovelock. 2010. Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuarine, Coastal and Shelf Science 86 (1): 21–30.

    Google Scholar 

  • Allison, M.A., and E.A. Meselhe. 2010. The use of large water and sediment diversions in the lower Mississippi River (Louisiana) for coastal restoration. Journal of Hydrology 387 (3-4): 346–360.

    Google Scholar 

  • Ameen, A.D., A.S. Kolker, and C.M. Taylor. 2017. Vegetation and shear strength in a delta-splay mouth bar. Wetlands 37 (6): 1159–1168.

    Google Scholar 

  • Anderson, C., and M. Treshow. 1980. A review of environmental and genetic factors that affect height in Spartina alterniflora Loisel. Estuaries 3 (3): 168–176.

  • Armitage, A.R., C.A. Weaver, J.S. Kominoski, and S.C. Pennings. 2019. Resistance to hurricane effects varies among wetland vegetation types in the marsh-mangrove ecotone. Estuaries And Coasts Online First.

  • Ball, M.C. 1988. Ecophysiology of mangroves. Trees 2: 129–142.

    Google Scholar 

  • Barbier, E.B. 2019. The value of coastal wetland ecosystem services. In Coastal wetlands: An integrated ecosystem approach, ed. G.M.E. Perillo, E. Wolanski, D.R. Cahoon, and C.S. Hopkinson, 947–964. Amsterdam: Elsevier.

  • Baustian, J.J., I.A. Mendelssohn, and M.W. Hester. 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18 (11): 3377–3382.

    Google Scholar 

  • Beetham, E., P.S. Kench, and S. Popinet. 2017. Future reef growth can mitigate physical impacts of sea-level rise on atoll islands. Earth’s Future 5 (10): 1002–1014.

    Google Scholar 

  • Belknap, D.F., R.C. Shipp, R. Stuckenrath, J.T. Kelley, and H.W. Borns Jr. 1989. Holocene sea-level change in coastal Maine. In Neotectonics of Maine: Studies in seismicity, crustal warping, and sea level change, ed. W.A. Anderson and H.W. Borns Jr., 85–105. Augusta: Maine Geological Survey.

    Google Scholar 

  • Belliard, J.P., N. Di Marco, L. Carniello, and M. Toffolon. 2016. Sediment and vegetation spatial dynamics facing sea-level rise in microtidal salt marshes: Insights from an ecogeomorphic model. Advances in Water Resources 93: 249–264.

    Google Scholar 

  • Bescansa, P., and C. Roquero. 1990. Characterization and classification of tidal marsh soils and plant communities in North-West Spain. Catena 17 (4-5): 347–355.

    Google Scholar 

  • Bird, E.C.F. 1986. Mangroves and intertidal morphology in Westernport Bay. Victoria, Australia Marine Geology 69: 251–271.

    Google Scholar 

  • Blum, L.K., R.R. Christian, D.R. Cahoon, and P.L. Wiberg. 2020. Processes influencing marsh elevation change in low- and high-elevation zones of a temperate salt marsh. Estuaries And Coasts. https://doi.org/10.1007/s12237-020-00796-z

  • Breithaupt, J.L., J.M. Smoak, V.H. Rivera-Monroy, E. Castaneda-Moya, R. Moyer, M. Simard, and C. Sanders. 2017. Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils. Marine Geology 390: 170–180.

    CAS  Google Scholar 

  • Bricker-Urso, S., S.W. Nixon, J.K. Cochran, D.J. Hirschberg, and C. Hunt. 1989. Accretion rates and sediment accumulation in Rhode Island salt marshes. Estuaries 12 (4): 300–317.

    CAS  Google Scholar 

  • Broome, S.W., C. Craft, and M. Burchell. 2019. Tidal marsh creation. In Coastal wetlands: An integrated ecosystem approach, ed. G.M.E. Perillo, E. Wolanski, D.R. Cahoon, and C.S. Hopkinson, 789–816. Amsterdam: Elsevier.

  • Cahoon, D.R. 1994. Recent accretion in two managed marsh impoundments in coastal Louisiana. Ecological Applications 4 (1): 166–176.

    Google Scholar 

  • Cahoon, D.R., M.A. Ford, and P.F. Hensel. 2004. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance. In The Ecogeomorphology of Tidal Marshes, ed. S. Fagherazzi, M. Marani, and L.K. Blum, 247–266. Washington: American Geophysical Union.

    Google Scholar 

  • Cahoon, D.R., J.R. French, T. Spencer, D.J. Reed, and I. Moller. 2000. Vertical accretion versus elevational adjustment in UK saltmarshes: An evaluation of methodologies. In Coastal and estuarine environments: Sedimentology, geomorphology and geoarcheology, ed. K. Pye and J.R.L. Allen, 223–238. London: Geological Society.

    Google Scholar 

  • Cahoon, D.R., and C.G. Groat. 1990. A study of marsh management practice in coastal Louisiana. Final report submitted to minerals management service, New Orleans, LA. Contract No. 14-12-0001-30410. OCS Study/MMS 90-0075 (90–0076): 90–0077.

    Google Scholar 

  • Cahoon, D.R., P. Hensel, J. Rybczyk, K.L. McKee, C.E. Proffitt, and B.C. Perez. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91 (6): 1093–1105.

    Google Scholar 

  • Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, K.L. McKee, and N. Saintilan. 2006. Coastal wetland vulnerability to relative sea-level rise: Wetland elevation trends and process controls. In Wetlands and natural resource management, ed. J.T.A. Verhoeven, B. Beltman, R. Bobbink, and D.F. Whigham, 271–292. Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Cahoon, D.R., J.C. Lynch, C.T. Roman, J.P. Schmit, and D.E. Skidds. 2019. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuaries and Coasts 42 (1): 1–15.

    CAS  Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128 (1-2): 1–9.

    Google Scholar 

  • Cahoon, D.R., D.A. White, and J.C. Lynch. 2011. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology 131 (3-4): 57–68.

    Google Scholar 

  • Callaway, J.C., R.D. DeLaune, and W.H. Patrick. 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research 13: 181–191.

    Google Scholar 

  • Cameron, C.C., and C.A. Palmer. 1995. The mangrove peat of the Tobacco Range Islands, Belize Barrier Reef, Central America. Atoll Research Bulletin 431: 1–32.

    Google Scholar 

  • Carey, J.C., S.B. Moran, R.P. Kelly, A.S. Kolker, and R.W. Fulweiler. 2017. The declining role of organic matter in New England salt marshes. Estuaries and Coasts 40 (3): 626–639.

    CAS  Google Scholar 

  • Cazenave, A., and G. Le Cozannet. 2014. Sea level rise and its coastal impacts. Earth’s Future 2 (2): 15–34.

    Google Scholar 

  • Chambers, L.G., H.E. Steinmuller, and J.L. Breithaupt. 2019. Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss. Ecology 100: 15.

    Google Scholar 

  • Chen, Y.N., Y. Li, C. Thompson, X.K. Wang, T.L. Cai, and Y. Chang. 2018. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary. Geomorphology 318: 270–282.

    Google Scholar 

  • Cherry, J.A., K.L. McKee, and J.B. Grace. 2009. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. Journal of Ecology 97: 67–77.

    Google Scholar 

  • Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine, Coastal and Shelf Science 50 (3): 315–331.

    Google Scholar 

  • Coldren, G.A., J.A. Langley, I.C. Feller, and S.K. Chapman. 2019. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. Journal of Ecology 107 (1): 79–90.

    Google Scholar 

  • Coleman, D.J., and M.L. Kirwan. 2019. The effect of a small vegetation dieback event on salt marsh sediment transport. Earth Surface Processes and Landforms 44 (4): 944–952.

    Google Scholar 

  • Coleman, J.M., H.H. Roberts, and G.W. Stone. 1998. Mississippi River delta: an overview. Journal of Coastal Research 14: 698–716.

    Google Scholar 

  • Colmer, T.D., and T.J. Flowers. 2008. Flooding tolerance in halophytes. New Phytologist 179 (4): 964–974.

    CAS  Google Scholar 

  • Comeaux, R.S. 2010. Black mangrove (Avicennia sp.) colony expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels. Thesis, University of Texas at Austin Austin, TX.

  • Crosby, S.C., D.F. Sax, M.E. Palmer, H.S. Booth, L.A. Deegan, M.D. Bertness, and H.M. Leslie. 2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuarine, Coastal and Shelf Science 181: 93–99.

    Google Scholar 

  • D’Alpaos, A., and M. Marani. 2016. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Advances in Water Resources 93: 265–275.

    Google Scholar 

  • Davidson, N.C. 2014. How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research 65 (10): 934–941.

    Google Scholar 

  • Davis, J., C. Currin, and J.T. Morris. 2017. Impacts of fertilization and tidal inundation on elevation change in microtidal, low relief salt marshes. Estuaries and Coasts 40 (6): 1677–1687.

  • Day, J.W., G.P. Kemp, D.J. Reed, D.R. Cahoon, R.M. Boumans, J.M. Suhayda, and R. Gambrell. 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecological Engineering 37 (2): 229–240.

    Google Scholar 

  • De Battisti, D., M.S. Fowler, S.R. Jenkins, M.W. Skov, M. Rossi, T.J. Bouma, P.J. Neyland, and J.N. Griffin. 2019. Intraspecific root trait variability along environmental gradients affects salt marsh resistance to lateral erosion. Frontiers in Ecology and Evolution 7: 150.

    Google Scholar 

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490 (7420): 388–392.

    CAS  Google Scholar 

  • DeLaune, R.D., R.H. Baumann, and J.G. Gosselink. 1983. Relationships among vertical accretion, coastal submergence, and erosion in a Louisiana gulf coast marsh. Journal of Sedimentary Petrology 53: 147–157.

    Google Scholar 

  • Delaune, R.D., J.A. Nyman, and W.H. Patrick. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.

    Google Scholar 

  • Doughty, C.L., K.C. Cavanaugh, R.F. Ambrose, and E.D. Stein. 2019. Evaluating regional resiliency of coastal wetlands to sea level rise through hypsometry-based modeling. Global Change Biology 25 (1): 78–92.

    Google Scholar 

  • Dullo, W.C. 2005. Coral growth and reef growth: A brief review. Facies 51 (1-4): 33–48.

    Google Scholar 

  • Fagherazzi, S., G. Mariotti, P.L. Wiberg, and K.J. McGlathery. 2013. Marsh collapse does not require sea level rise. Oceanography 26 (3): 70–77.

    Google Scholar 

  • Feher, L.C., and M.W. Hester. 2018. The interactive effects of created salt marsh substrate type, hydrology, and nutrient regime on Spartina alterniflora and Avicennia germinans productivity and soil development. Wetlands Ecology and Management 26 (4): 715–728.

    CAS  Google Scholar 

  • Fitzgerald, D.M., M.S. Fenster, B.A. Argow, and I.V. Buynevich. 2008. Coastal impacts due to sea-level rise. Annual Review of Earth and Planetary Sciences 36 (1): 601–647.

    CAS  Google Scholar 

  • Ford, M.A., D.R. Cahoon, and J.C. Lynch. 1999. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecological Engineering 12 (3-4): 189–205.

    Google Scholar 

  • Ford, M.A., and J.B. Grace. 1998. Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation, and soil elevation changes in a coastal marsh. Journal of Ecology 86 (6): 974–982.

    Google Scholar 

  • Friess, D.A., K.W. Krauss, E.M. Horstman, T. Balke, T.J. Bouma, D. Galli, and E.L. Webb. 2012. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biological Reviews 87 (2): 346–366.

    Google Scholar 

  • Ganju, N.K. 2019. Marshes are the new beaches: Integrating sediment transport into restoration planning. Estuaries and Coasts 42 (4): 917–926.

    CAS  Google Scholar 

  • Ganju, N.K., M.L. Kirwan, P.J. Dickhudt, G.R. Guntenspergen, D.R. Cahoon, and K.D. Kroeger. 2015. Sediment transport-based metrics of wetland stability. Geophysical Research Letters 42 (19): 7992–8000.

    Google Scholar 

  • Gehrels, W.R. 1999. Middle and late Holocene sea-level changes in eastern Maine reconstructed from foraminiferal saltmarsh stratigraphy and AMS 14C dates on basal peat. Quaternary Research 52 (3): 350–359.

    Google Scholar 

  • Goñi, M.A., and K.A. Thomas. 2000. Sources and transformations of organic matter in surface soils and sediments from a tidal estuary (north inlet, South Carolina, USA). Estuaries 23 (4): 548–564.

    Google Scholar 

  • Gonneea, M.E., C.V. Maio, K.D. Kroeger, A.D. Hawkes, J. Mora, R. Sullivan, S. Madsen, R.M. Buzard, N. Cahill, and J.P. Donnelly. 2019. Salt marsh ecosystem restructuring enhances elevation resilience and carbon storage during accelerating relative sea-level rise. Estuarine, Coastal and Shelf Science 217: 56–68.

    CAS  Google Scholar 

  • Graham, S.A., and I.A. Mendelssohn. 2014. Coastal wetland stability maintained through counterbalancing accretionary responses to chronic nutrient enrichment. Ecology 95 (12): 3271–3283.

    Google Scholar 

  • Hackney, C.T. 1985. In situ decomposition of Spartina alterniflora roots and rhizomes under various hydrological and reducing conditions. Estuaries 8: A123–A123.

    Google Scholar 

  • Hodson, R.E., R.R. Christian, and A.E. MacCubbin. 1984. Lignocellulose and lignin in the salt marsh grass Spartina alterniflora: Initial concentrations and short-term, post-depositional changes in detrital matter. Marine Biology 81 (1): 1–7.

    CAS  Google Scholar 

  • Hollis, L.O., and R.E. Turner. 2018. The tensile root strength of five emergent coastal macrophytes. Aquatic Botany 146: 39–47.

    Google Scholar 

  • Horton, B.P., I. Shennan, S.L. Bradley, N. Cahill, M. Kirwan, R.E. Kopp, and T.A. Shaw. 2018. Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. Nature Communications 9: 1–7.

    CAS  Google Scholar 

  • Howes, B.L., J.W.H. Dacey, and J.M. Teal. 1985. Annual carbon mineralization and belowground production of Spartina alterniflora in a New England salt marsh. Ecology 66 (2): 595–605.

  • Huxham, M., J. Langat, F. Tamooh, H. Kennedy, M. Mencuccini, M.W. Skov, and J. Kairo. 2010. Decomposition of mangrove roots: Effects of location, nutrients, species identity and mix in a Kenyan forest. Estuarine, Coastal and Shelf Science 88 (1): 135–142.

    Google Scholar 

  • IPCC. 2014. Intergovernmental Panel on Climate Change 2014: Impacts, adaptation, and vulnerability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jafari, N.H., B.D. Harris, J.A. Cadigan, J.W. Day, C.E. Sasser, G.P. Kemp, C. Wigand, A. Freeman, L.A. Sharp, J. Pahl, G.P. Shaffer, G.O. Holm, and R.R. Lane. 2019. Wetland shear strength with emphasis on the impact of nutrients, sediments, and sea level rise. Estuarine, Coastal and Shelf Science 229: Online Paper 106394.

    Google Scholar 

  • Jervey, M.T. 1988. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In Sea-level changes: An integrated approach, ed. C.K. Wilgus, B.S. Hastings, H. Posamentier, J. Van Wagoner, C.A. Ross, and C.G.S.C. Kendall, 47–69. Tulsa: Society of Economic Paleontologists and Mineralogists.

    Google Scholar 

  • Kakeh, N., G. Coco, and M. Marani. 2016. On the morphodynamic stability of intertidal environments and the role of vegetation. Advances in Water Resources 93: 303–314.

    Google Scholar 

  • Kamal, S., J. Warnken, M. Bakhtiyari, and S.Y. Lee. 2017. Sediment distribution in shallow estuaries at fine scale: In situ evidence of the effects of three-dimensional structural complexity of mangrove pneumatophores. Hydrobiologia 803 (1): 121–132.

    Google Scholar 

  • Kelleway, J.J., N. Saintilan, P.I. Macreadie, J.A. Baldock, and P.J. Ralph. 2017. Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh. Biogeosciences 14 (16): 3763–3779.

    CAS  Google Scholar 

  • Khan, N.S., E. Ashe, B.P. Horton, A. Dutton, R.E. Kopp, G. Brocard, S.E. Engelhart, D.F. Hill, W.R. Peltier, C.H. Vane, and F.N. Scatena. 2017. Drivers of Holocene sea-level change in the Caribbean. Quaternary Science Reviews 155: 13–36.

    Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D'Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37: 1–5.

    Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6 (3): 253–260.

    Google Scholar 

  • Krause, J.R., E.B. Watson, C. Wigand, and N. Maher. 2019. Are tidal salt marshes exposed to nutrient pollution more vulnerable to sea level rise? Wetlands Online.

  • Krauss, K.W., J.A. Allen, and D.R. Cahoon. 2003. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine, Coastal and Shelf Science 56 (2): 251–259.

    Google Scholar 

  • Krauss, K.W., N. Cormier, M.J. Osland, M.L. Kirwan, C.L. Stagg, J.A. Nestlerode, M.J. Russell, A.S. From, A.C. Spivak, D.D. Dantin, J.E. Harvey, and A.E. Almario. 2017. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Scientific Reports 7 (1): 1030.

    Google Scholar 

  • Krauss, K.W., A.W.J. Demopoulos, N. Cormier, A.S. From, J.P. McClain-Counts, and R.R. Lewis. 2018. Ghost forests of Marco Island: Mangrove mortality driven by belowground soil structural shifts during tidal hydrologic alteration. Estuarine, Coastal and Shelf Science 212: 51–62.

    CAS  Google Scholar 

  • Krauss, K.W., K.L. McKee, C.E. Lovelock, D.R. Cahoon, N. Saintilan, R. Reef, and L. Chen. 2014. How mangrove forests adjust to rising sea level. New Phytologist 202 (1): 19–24.

    Google Scholar 

  • Krone, R.B. 1987. A method for simulating historic marsh elevations. In Coastal sediments ‘87, ed. N.C. Krause, 316–323. New York: American Society of Civil Engineers.

    Google Scholar 

  • Kumara, M.P., L.P. Jayatissa, K.W. Krauss, D.H. Phillips, and M. Huxham. 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164 (2): 545–553.

    CAS  Google Scholar 

  • Lane, R.R., S.K. Mack, J.W. Day, R.D. DeLaune, M.J. Madison, and P.R. Precht. 2016. Fate of soil organic carbon during wetland loss. Wetlands 36 (6): 1167–1181.

    Google Scholar 

  • Lang'at, J.K.S., J.G. Kairo, M. Mencuccini, S. Bouillon, M.W. Skov, S. Waldron, and M. Huxham. 2014. Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS One 9: e0118334.

    Google Scholar 

  • Langley, J.A., K.L. McKee, D.R. Cahoon, J.A. Cherry, and J.P. Megonigal. 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences 106 (15): 6182–6186.

    CAS  Google Scholar 

  • Lee, S.Y., J.H. Primavera, F. Dahdouh-Guebas, K. McKee, J.O. Bosire, S. Cannicci, K. Diele, F. Fromard, N. Koedam, C. Marchand, I. Mendelssohn, N. Mukherjee, and S. Record. 2014. Ecological role and services of tropical mangrove ecosystems: A reassessment. Global Ecology and Biogeography 23 (7): 726–743.

    Google Scholar 

  • Leonard, L.A., and A.L. Croft. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine, Coastal and Shelf Science 69 (3-4): 325–336.

    Google Scholar 

  • Leonard, L.A., A.C. Hine, and M.E. Luther. 1995. Surficial sediment transport and deposition processes in a Juncus roemerianus marsh, west-central Florida. Journal of Coastal Research 11: 322–336.

    Google Scholar 

  • Leonard, L.A., and M.E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography 40 (8): 1474–1484.

    Google Scholar 

  • Leonardi, N., I. Camacina, C. Donatelli, N.K. Ganju, A.J. Plater, M. Schuerch, and S. Temmerman. 2018. Dynamic interactions between coastal storms and salt marshes: A review. Geomorphology 301: 92–107.

    Google Scholar 

  • Li, H., and S.L. Yang. 2009. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta. Journal of Coastal Research 25: 915–936.

    Google Scholar 

  • Lovelock, C.E., D.R. Cahoon, D.A. Friess, G.R. Guntenspergen, K.W. Krauss, R. Reef, K. Rogers, M.L. Saunders, F. Sidik, A. Swales, N. Saintilan, L.X. Thuyen, and T. Triet. 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526 (7574): 559–563.

    CAS  Google Scholar 

  • Lovelock, C.E., I.C. Feller, K.L. McKee, and R. Thompson. 2005. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama. Caribbean Journal of Science 41: 456–464.

    Google Scholar 

  • Lu, M., E.R. Herbert, J.A. Langley, M.L. Kirwan, and J.P. Megonigal. 2019. Nitrogen status regulates morphological adaptation of marsh plants to elevated CO2. Nature Climate Change 9 (10): 764–768.

    CAS  Google Scholar 

  • Macintyre, I.G., M.M. Littler, and D.S. Littler. 1995. Holocene history of Tobacco Range, Belize, Central America. Atoll Research Bulletin 430: 1–18.

    Google Scholar 

  • Macintyre, I.G., M.A. Toscano, R.G. Lighty, and G.B. Bond. 2004. Holocene history of the mangrove islands of Twin Cays, Belize, Central America. Atoll Research Bulletin 510: 1–16.

    Google Scholar 

  • Mariotti, G., and S. Fagherazzi. 2013. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the National Academy of Sciences of the United States of America 110 (14): 5353–5356.

    CAS  Google Scholar 

  • Mazda, Y., E. Wolanski, B. King, A. Sase, D. Ohtsuka, and M. Magi. 1997. Drag force due to vegetation in mangrove swamps. Mangroves and Salt Marshes 1 (3): 193–199.

    Google Scholar 

  • McKee, K.L. 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91 (4): 475–483.

    Google Scholar 

  • McKee, K.L., D.R. Cahoon, and I.C. Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16 (5): 545–556.

    Google Scholar 

  • McKee, K.L., and P.L. Faulkner. 2000a. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize. Atoll Research Bulletin 468: 46–58.

    Google Scholar 

  • McKee, K.L., and P.L. Faulkner. 2000b. Restoration of biogeochemical function in mangrove forest. Restoration Ecology 8 (3): 247–259.

    Google Scholar 

  • McKee, K.L., and W.H. Patrick. 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: A review. Estuaries 11 (3): 143–151.

    Google Scholar 

  • McKee, K.L., K. Rogers, and N. Saintilan. 2012. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea level. In Global change and the function and distribution of wetlands, ed. B. Middleton, 63–96. The Netherlands: Springer.

    Google Scholar 

  • McKee, K.L., and J.E. Rooth. 2008. Where temperate meets tropical: Multifactorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology 14: 1–14.

    Google Scholar 

  • McKee, K.L., and W.C. Vervaeke. 2009. Impacts of human disturbance on soil erosion and habitat stability of mangrove-dominated islands in the Pelican Cays and Twin Cays ranges, Belize. Smithsonian Contributions to the Marine Sciences 38: 415–427.

    Google Scholar 

  • McKee, K.L., and W.C. Vervaeke. 2018. Will fluctuations in salt marsh - mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Global Change Biology 24 (3): 1224–1238.

    Google Scholar 

  • Mendelssohn, I.A., and K.L. McKee. 2000. Salt marshes and mangroves. In North American terrestrial vegetation, ed. M.G. Barbour and W.D. Billings, 501–536. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mendelssohn, I.H., and J.T. Morris. 2000. Eco-physiological controls on the productivity of Spartina alterniflora Loisel. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 59–80. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Middleton, B.A., and K.L. McKee. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. Journal of Ecology 89 (5): 818–828.

    Google Scholar 

  • Möller, I., M. Kudella, F. Rupprecht, T. Spencer, M. Paul, B.K. van Wesenbeeck, G. Wolters, K. Jensen, T.J. Bouma, M. Miranda-Lange, and S. Schimmels. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience 7 (10): 727–731.

    Google Scholar 

  • Morris, J.T., D.C. Barber, J.C. Callaway, R. Chambers, S.C. Hagen, C.S. Hopkinson, B.J. Johnson, P. Megonigal, S.C. Neubauer, T. Troxler, and C. Wigand. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Future 4 (4): 110–121.

    Google Scholar 

  • Morris, J.T., and J.C. Callaway. 2018. Chapter 6: Physical and biological regulation of carbon sequestration in salt marshes. In A blue carbon primer: The state of coastal wetland carbon science, practice, and policy, ed. L. Windham-Meyers, S. Crooks, and T. Troxler, 67–79. Boca Raton: CRC Press.

    Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877.

    Google Scholar 

  • Morris, J.T., K.L. Sundberg, and C.S. Hopkinson. 2013. Salt marsh primary production and its responses to relative sea level and nutrients at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26 (3): 78–84.

    Google Scholar 

  • Moskalski, S.M., and C.K. Sommerfield. 2012. Suspended sediment deposition and trapping efficiency in a Delaware salt marsh. Geomorphology 139: 195–204.

    Google Scholar 

  • Mudd, S.M., A. D'Alpaos, and J.T. Morris. 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research - Earth Surface 115: 2156–2202.

    Google Scholar 

  • Nardin, W., and D.A. Edmonds. 2014. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nature Geoscience 7 (10): 722–726.

    CAS  Google Scholar 

  • Nardin, W., D.A. Edmonds, and S. Fagherazzi. 2016. Influence of vegetation on spatial patterns of sediment deposition in deltaic island during flood. Advances in Water Resources 93: 263–248.

    Google Scholar 

  • Nicholls, R.J. 2004. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Global Environmental Change-Human and Policy Dimensions 14 (1): 69–86.

    Google Scholar 

  • Niering, W.A., R.S. Warren, and C.G. Weymouth. 1977. Our dynamic tidal marshes: Vegetation changes as revealed by peat analysis. Connecticut Arboretum Bulletin 22: 1–13.

    Google Scholar 

  • Norris, B.K., J.C. Mullarney, K.R. Bryan, and S.M. Henderson. 2019. Turbulence within natural mangrove pneumatophore canopies. Journal of Geophysical Research-Oceans 124 (4): 2263–2288.

    Google Scholar 

  • Nyman, J.A., R.D. Delaune, and W.H. Patrick, Jr. 1990. Wetland soil formation in the rapidly subsiding Mississippi River Deltaic Plain: Mineral and organic matter relationships. Estuarine, Coastal and Shelf Science 31 (1): 57–69.

  • Nyman, J.A., R.D. DeLaune, H.H. Roberts, and W.H. Patrick Jr. 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96: 269–279.

    Google Scholar 

  • Olliver, E.A., D.A. Edmonds, and J.B. Shaw. 2020. Influence of floods, tides, and vegetation on sediment retention in Wax Lake Delta, Louisiana, USA. Journal of Geophysical Research - Earth Surface 125: e2019JF005316.

    Google Scholar 

  • Oosterlee, L., T. Cox, W. Vandenbruwaene, T. Maris, S. Temmerman, and P. Meire. 2018. Tidal marsh restoration design affects feedbacks between inundation and elevation change. Estuaries and Coasts 41 (3): 613–625.

    Google Scholar 

  • Osland, M.J., N.M. Enwright, R.H. Day, C.A. Gabler, C.L. Stagg, and J.B. Grace. 2016. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Global Change Biology 22 (1): 1–11.

    Google Scholar 

  • Osland, M.J., L.C. Feher, A.C. Spivak, J.A. Nestlerode, A.E. Almario, N. Cormier, A.S. From, K.W. Krauss, M.J. Russell, F. Alvarez, D.D. Dantin, J. Harvey, and C.L. Stagg. 2020. Rapid peat development beneath created, maturing mangrove forests: Ecosystem changes across a 25-year chronosequence. Ecological Applications Online.

  • Osland, M.J., C.A. Gabler, J.B. Grace, R.H. Day, M.L. McCoy, J.L. McLeod, A.S. From, N.M. Enwright, L.C. Feher, C.L. Stagg, and S.B. Hartley. 2018. Climate and plant controls on soil organic matter in coastal wetlands. Global Change Biology 24 (11): 5361–5379.

    Google Scholar 

  • Payne, A.R., D.M. Burdick, and G.E. Moore. 2019. Potential effects of sea-level rise on salt marsh elevation dynamics in a New Hampshire estuary. Estuaries and Coasts 42 (6): 1405–1419.

    CAS  Google Scholar 

  • Perry, C.L., and I.A. Mendelssohn. 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29 (1): 396–406.

    Google Scholar 

  • Phillips, D.H., M.P. Kumara, L.P. Jayatissa, K.W. Krauss, and M. Huxham. 2017. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka. Wetlands 37 (3): 471–483.

    Google Scholar 

  • Potouroglou, M., J.C. Bull, K.W. Krauss, H.A. Kennedy, M. Fusi, D. Daffonchio, M.M. Mangora, M.N. Githaiga, K. Diele, and M. Huxham. 2017. Measuring the role of seagrasses in regulating sediment surface elevation. Scientific Reports 7: 11.

    Google Scholar 

  • Rampino, M.R. 1979. Holocene submergence of southern Long Island, New York. Nature 280 (5718): 132–134.

    Google Scholar 

  • Redfield, A.C. 1965. Ontogeny of a salt marsh estuary. Science 147 (3653): 50–55.

    CAS  Google Scholar 

  • Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42: 201–237.

    Google Scholar 

  • Redfield, A.C., and M. Rubin. 1962. Age of salt marsh peat and its relation to recent changes in sea level at Barnstable Massachusetts. Proceedings of the National Academy of Sciences of the United States of America 48: 1728–1735.

    CAS  Google Scholar 

  • Ridge, J.T., A.B. Rodriguez, and F.J. Fodrie. 2017. Evidence of exceptional oyster-reef resilience to fluctuations in sea level. Ecology and Evolution 7 (23): 10409–10420.

    Google Scholar 

  • Rodriguez, J.F., P.M. Saco, S. Sandi, N. Saintilan, and G. Riccardi. 2017. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nature Communications 8: 16094.

    CAS  Google Scholar 

  • Rogers, K., J.J. Kelleway, N. Saintilan, J.P. Megonigal, J.B. Adams, J.R. Holmquist, M. Lu, L. Schile-Beers, A. Zawadzki, D. Mazumder, and C.D. Woodroffe. 2019. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567 (7746): 91–95.

    CAS  Google Scholar 

  • Rogers, K., N. Saintilan, and D. Cahoon. 2005. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia. Wetlands Ecology and Management 13 (5): 587–598.

    Google Scholar 

  • Roman, C.T. 2017. Salt marsh sustainability: Challenges during an uncertain future. Estuaries and Coasts 40 (3): 711–716.

    Google Scholar 

  • Roner, M., A. D’Alpaos, M. Ghinassi, M. Marani, S. Silvestri, E. Franceschinis, and N. Realdon. 2016. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy. Advances in Water Resources 93: 276–287.

    CAS  Google Scholar 

  • Rooth, J.E., J.C. Stevenson, and J.C. Cornwall. 2003. Increased sediment accretion rates following invasion by Phragmites australis: The role of litter. Estuaries 26 (2): 475–483.

    Google Scholar 

  • Sanchez-Nunez, D.A., G. Bernal, and J. Pineda. 2019. The relative role of mangroves on wave erosion mitigation and sediment properties. Estuaries and Coasts 42 (8): 2124–2138.

    Google Scholar 

  • Sasser, C.E., E. Evers-Hebert, G.O. Holm, B. Milan, J.B. Sasser, E.F. Peterson, and R.D. DeLaune. 2018. Relationships of marsh soil strength to belowground vegetation biomass in Louisiana coastal marshes. Wetlands 38 (2): 401–409.

    Google Scholar 

  • Sherman, R.E., T.J. Fahey, and J.J. Battles. 2000. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest. Journal of Ecology 88 (1): 165–178.

    Google Scholar 

  • Shi, Z., J.S. Pethick, F. Burd, and B. Murphy. 1996. Velocity profiles in a salt marsh canopy. Geo-Marine Letters 16 (4): 319–323.

    Google Scholar 

  • Silliman, B.R., Q. He, C. Angelini, C.S. Smith, M.L. Kirwan, P. Daleo, J.J. Renzi, J. Butler, T.Z. Osborne, J.C. Nifong, and J. van de Koppel. 2019. Field experiments and meta-analysis reveal wetland vegetation as a crucial element in the coastal protection paradigm. Current Biology 29 (11): 1800–1806.

    CAS  Google Scholar 

  • Spencer, T., M. Schuerch, R.J. Nicholls, J. Hinkel, D. Lincke, A.T. Vafeidis, R. Reef, L. McFadden, and S. Brown. 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Global and Planetary Change 139: 15–30.

    Google Scholar 

  • Swales, A., S.J. Bentley, and C.E. Lovelock. 2015. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change? Earth Surface Processes and Landforms 40 (12): 1672–1687.

    Google Scholar 

  • Teal, J.M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624.

    Google Scholar 

  • Tempest, J.A., I. Moller, and T. Spencer. 2015. A review of plant-flow interactions on salt marshes: The importance of vegetation structure and plant mechanical characteristics. Wiley Interdisciplinary Reviews Water 2 (6): 669–681.

    Google Scholar 

  • Turner, R.E. 2011. Beneath the salt marsh canopy: Loss of soil strength with increasing nutrient loads. Estuaries and Coasts 34 (5): 1084–1093.

    CAS  Google Scholar 

  • Turner, R.E., E.M. Swenson, and C.S. Milan. 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 583–595. Berlin: Kluwer Academic Publishers.

    Google Scholar 

  • Valiela, I., J.M. Teal, and N.Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: Belowground biomass. Limnology and Oceanography 21 (2): 245–252.

    Google Scholar 

  • van Coppenolle, R., C. Schwarz, and S. Temmerman. 2018. Contribution of mangroves and salt marshes to nature-based mitigation of coastal flood risks in major deltas of the world. Estuaries and Coasts 41 (6): 1699–1711.

    Google Scholar 

  • van Coppenolle, R., and S. Temmerman. 2020. Identifying global hotspots where coastal wetland conservation can contribute to nature-based mitigation of coastal flood risks. Global and Planetary Change 187.

  • van der Valk, A.G., and P.M. Attiwill. 1984. Decomposition of leaf and root litter of Avicennia marina at Westernport Bay, Victoria, Australia. Aquatic Botany 18 (3): 205–221.

    Google Scholar 

  • Vandenbruwaene, W., T. Maris, T.J.S. Cox, D.R. Cahoon, P. Meire, and S. Temmerman. 2011. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh. Geomorphology 130 (3-4): 115–126.

    Google Scholar 

  • Vovides, A.G., J. Vogt, A. Kollert, U. Berger, U. Grueters, R. Peters, A.L. Lara-Dominguez, and J. Lopez-Portillo. 2014. Morphological plasticity in mangrove trees: Salinity-related changes in the allometry of Avicennia germinans. Trees-Structure and Function 28 (5): 1413–1425.

    Google Scholar 

  • Waller, D.M. 1991. The dynamics of growth and form. In Plant ecology, ed. M.J. Crawley. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Wang, G.D., M. Wang, M. Jiang, X.G. Lyu, X.Y. He, and H.T. Wu. 2017. Effects of vegetation type on surface elevation change in Liaohe River Delta wetlands facing accelerated sea level rise. Chinese Geographical Science 27 (5): 810–817.

    Google Scholar 

  • Weston, N.B. 2014. Declining sediments and rising seas: An unfortunate convergence for tidal wetlands. Estuaries and Coasts 37 (1): 1–23.

    Google Scholar 

  • Whelan, K.R.T. 2005. The successional dynamics of lightning-initiated canopy gaps in the mangrove forests of Shark River, Everglades National Park, Florida International University Miami, Florida, USA.

  • Whelan, K.R.T., T.J. Smith, D.R. Cahoon, J.C. Lynch, and G.H. Anderson. 2005. Groundwater control of mangrove surface elevation: Shrink and swell varies with soil depth. Estuaries 28 (6): 833–843.

    Google Scholar 

  • Wilson, J.O., R. Buchsbaum, I. Valiela, and T. Swain. 1986. Decomposition in salt marsh ecosystems: Phenolic dynamics during decay of litter of Spartina alterniflora. Marine Ecology Progress Series 29: 177–187.

    Google Scholar 

  • Woodroffe, C.D., K. Rogers, K.L. McKee, C.E. Lovelock, I.A. Mendelssohn, and N. Saintilan. 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science 8 (1): 243–266.

    CAS  Google Scholar 

  • Woodroffe, C.D., B.G. Thom, and J. Chappell. 1985. Development of widespread mangrove swamps in mid-Holocene times in northern Australia. Nature 317 (6039): 711–713.

    Google Scholar 

  • Xiong, Y.M., A. Ola, S.M. Phan, J.T. Wu, and C.E. Lovelock. 2019. Soil structure and its relationship to shallow soil subsidence in coastal wetlands. Estuaries and Coasts 42 (8): 2114–2123.

    Google Scholar 

  • Zoccarato, C., C. Da Lio, L. Tosi, and P. Tatini. 2019. A coupled biomorpho-geomechanical model of tidal marsh evolution. Water Resources Research 55 (11): 8330–8349.

    Google Scholar 

Download references

Acknowledgments

The authors thank K. Krauss and two anonymous reviewers for helpful comments on the manuscript, and J. Lynch for revising Fig. 4. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Cahoon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Kenneth L. Heck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahoon, D.R., McKee, K.L. & Morris, J.T. How Plants Influence Resilience of Salt Marsh and Mangrove Wetlands to Sea-Level Rise. Estuaries and Coasts 44, 883–898 (2021). https://doi.org/10.1007/s12237-020-00834-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00834-w

Keywords

Navigation