Skip to main content

Advertisement

Log in

Coastal Wetland Elevation Dynamics, Sedimentation, and Accommodation Space Across Timescales

  • Special Issue: Wetland Elevation Dynamics
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The capacity of coastal wetlands to maintain their position within a tidal frame is a key indicator of resilience to climate change. A range of techniques can be used to assess this capacity, but few studies have focussed on describing wetland elevation dynamics across timescales. In this study, annual-scale wetland elevation dynamics within intertidal coastal wetlands located at different tidal positions in south-eastern Australia were quantified using both shallow and deep rod surface elevation tables and marker horizon (rSET-MH) techniques. This was supplemented by analyses of sediment accumulation rates across the decadal-centurial timescale using 210Pb dating techniques. The rSET-MH technique indicated slight variation in surface elevation change between sub-sites and processes contributing to surface elevation gain was a product of processes occurring over the full substrate volume. This included sediment (both mineral and organic) accretion on the surface and belowground substrate expansion in tidal positions where accommodation space and inundation frequency were higher (i.e. in the mangrove). 210Pb data provided the means to consider sedimentation and wetland elevation trends over decadal timescales over which relative sea-level rise has been operating. Sedimentation responded to localised accommodation space processes, exceeding sea-level trends lower in the tidal frame, but corresponded to rates of sea-level rise where accommodation space was increasingly limited (i.e. higher in the tidal frame). We demonstrate that anticipated sea-level rise will create new accommodation space for wetland vegetation and that where sea-level rise is not matched by an equivalent increase in surface elevation, coastal wetlands will either die, retreat landwards, or transition to lower tidal positions that support mangroves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Adame, M.F., D. Neil, S.F. Wright, and C.E. Lovelock. 2010. Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuarine, Coastal and Shelf Science 86: 21–30. https://doi.org/10.1016/j.ecss.2009.10.013.

    Article  Google Scholar 

  • Allen, J.R.L. 2000. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews 19: 1155–1231. https://doi.org/10.1016/S0277-3791(99)00034-7.

    Article  Google Scholar 

  • Appleby, P.G., and F. Oldfield. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5: 1–8. https://doi.org/10.1016/S0341-8162(78)80002-2.

    Article  CAS  Google Scholar 

  • Blum, L.K., R.R. Christian, D.R. Cahoon, and P.L. Wiberg. 2020. Processes influencing marsh elevation change in low- and high-elevation zones of a temperate salt marsh. Estuaries and Coasts 44: 818–833. https://doi.org/10.1007/s12237-020-00796-z.

    Article  CAS  Google Scholar 

  • Breithaupt, J.L., J.M. Smoak, R.H. Byrne, M.N. Waters, R.P. Moyer, and C.J. Sanders. 2018. Avoiding timescale bias in assessments of coastal wetland vertical change. Limnology and Oceanography 63: 477–495. https://doi.org/10.1002/lno.10783.

    Article  Google Scholar 

  • Brenner, M., and W.F. Kenney. 2013. Dating wetland sediment cores. In Methods in biogeochemistry of wetlands, ed. R.D. DeLaune, K.R. Reddy, C.J. Richardson, and J.P. Megonigal, 879–900. Madison: Soil Science Society of America.

    Google Scholar 

  • Cahoon, D.R. 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38: 1077–1084. https://doi.org/10.1007/s12237-014-9872-8.

    Article  Google Scholar 

  • Cahoon, D.R., and G.R. Guntenspergen. 2010. Climate change, sea-level rise, and coastal wetlands. Natl. Wetl. Newsl. 32: 8–12.

    Google Scholar 

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R.D. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002. High-precision measurements of wetland sediment elevation: II. The Rod Surface Elevation Table. Journal of Sedimentary Research 72: 734–739. https://doi.org/10.1306/020702720734.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, K.L. McKee, and N. Saintilan. 2006. Coastal wetland vulnerability to relative sea-level rise: Wetland elevation trends and process controls. In Wetlands and Natural Resource Management, ed. J.T.A. Verhoeven, B. Beltman, R. Bobbink, and D.F. Whigham, 271–292. Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Cahoon, D.R., B.C. Perez, B.D. Segura, and J.C. Lynch. 2011. Elevation trends and shrink-swell response of wetland soils to flooding and drying. Estuarine, Coastal and Shelf Science 91: 463–474. https://doi.org/10.1016/j.ecss.2010.03.022.

    Article  Google Scholar 

  • Cahoon, D.R., M.A. Ford, and P.F. Hensel. 2004. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance, in: Fagherazzi, S., M. Marani, and L.K. Blum. (Eds.), The Ecogeomorphology of tidal marshes: Coastal estuarine studies. American Geophysical Union, Washington, pp. 247–266. https://doi.org/10.1029/ce059p0247.

  • Callaway, J.C., D.R. Cahoon, and J.C. Lynch. 2013. The surface elevation table-marker horizon method for measuring wetland accretion and elevation dymanics. In Methods in Biogeochemistry of Wetlands, ed. R.D. DeLaune, K.R. Reddy, C.J. Richardson, and J.P. Megonigal, 901–917. Madison: Soil Science Society of America.

    Google Scholar 

  • Carvalho, R., M. Kinsela, D. Hanslow, S. Hamylton, M. Linklater,, T. Ingleton, B. Morris, K. Allen, and C.D. Woodroffe. 2017. Identifying sediment compartment dynamics on the Illawarra coast. 26th NSW Coast. Conf. 1–13.

  • Carvalho, R.C., and C.D. Woodroffe. 2020. Evolution from estuary to delta: Alluvial plain morphology and sedimentary characteristics of the Shoalhaven River mouth, southeastern Australia. Estuarine, Coastal and Shelf Science 242: 106857. https://doi.org/10.1016/j.ecss.2020.106857.

    Article  Google Scholar 

  • Chafer, C.J. 1998. The effect of temporal geomorphological processes in shorebird populations at Shoalhaven Heads. NSW: University of Wollongong.

    Google Scholar 

  • Clough, J., A. Polaczyk, and M. Propato. 2016. Modeling the potential effects of sea-level rise on the coast of New York: Integrating mechanistic accretion and stochastic uncertainty. Environmental Modelling and Software 84: 349–362. https://doi.org/10.1016/j.envsoft.2016.06.023.

    Article  Google Scholar 

  • Cowell, P.J., and B.G. Thom. 1994. Morphodynamics of coastal evolution. In Coastal evolution: Late quaternary shoreline morphodynamics, ed. R.W.G. Carter and C.D. Woodroffe, 33–86. Cambridge: Cambridge University Press.

    Google Scholar 

  • Day, J.W., G.P. Kemp, D.J. Reed, D.R. Cahoon, R.M. Boumans, J.M. Suhayda, and R. Gambrell. 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecological Engineering 37: 229–240. https://doi.org/10.1016/j.ecoleng.2010.11.021.

    Article  Google Scholar 

  • Eslami-Andargoli, L., P. Dale, N. Sipe, and J. Chaseling. 2009. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland. Australia. Estuar. Coast. Shelf Sci. 85: 292–298. https://doi.org/10.1016/j.ecss.2009.08.011.

    Article  Google Scholar 

  • Fagherazzi, S., M.L. Kirwan, S.M. Mudd, G.R. Guntenspergen, S. Temmerman, A. D’Alpaos, J. van de Koppel, J.M. Rybczyk, E. Reyes, C. Craft, and J. Clough. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Review of Geophysics 50, 2011RG000359. https://doi.org/10.1029/2011RG000359.

  • French, J.R. 1993. Numerical simulation of vertical marsh growth and adjustment to accelerated sea-level rise, North Norfolk, U.K. Earth Surf. Process. Landforms 18: 63–81.

    Article  Google Scholar 

  • Glick, P., J. Clough, A. Polaczyk, B. Couvillion, and B. Nunley. 2013. Potential effects of sea-level rise on coastal wetlands in Southeastern Louisiana. Journal of Coastal Research 63: 211–233. https://doi.org/10.2112/SI63-0017.1.

    Article  Google Scholar 

  • Harrison, J., H. Heijnis, and G. Caprarelli. 2003. Historical pollution variability from abandoned mine sites, Greater Blue Mountains World Heritage Area, New South Wales. Australia Environmental Geology 43: 680–687. https://doi.org/10.1007/s00254-002-0687-8.

    Article  CAS  Google Scholar 

  • Hollins, S.E., J.J. Harrison, B.G. Jones, A. Zawadzki, H. Heijnis, and S. Hankin. 2011. Reconstructing recent sedimentation in two urbanised coastal lagoons (NSW, Australia) using radioisotopes and geochemistry. Journal of Paleolimnology 46: 579–596. https://doi.org/10.1007/s10933-011-9555-4.

    Article  Google Scholar 

  • Horton, B.P., I. Shennan, S.L. Bradley, N. Cahill, M. Kirwan, R.E. Kopp, and T.A. Shaw. 2018. Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. Nature Communications 9: 4–10. https://doi.org/10.1038/s41467-018-05080-0.

    Article  CAS  Google Scholar 

  • Iurian, A.R., G. Millward, W. Blake, and J.M. Abril Hernández. 2021. Fine-tuning of 210Pb-based methods for dating vegetated saltmarsh sediments. Quaternary Geochronology 62. https://doi.org/10.1016/j.quageo.2021.101153.

  • Jervey, M.T. 1988. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression, in: Wilgus, C., Hastings, B., Posamentier, H., Wagoner, J. Van, Ross, C., Kendall, C. (Eds.), Sea-level changes: An integrated approach. SEPM Special Publication, Tulsa, OK, 47–69. https://doi.org/10.2110/pec.88.01.0047.

  • Kelleway, J.J., N. Saintilan, P.I. Macreadie, C.G. Skilbeck, A. Zawadzki, and P.J. Ralph. 2016. Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Global Change Biology 22: 1097–1109. https://doi.org/10.1111/gcb.13158.

    Article  Google Scholar 

  • Kelleway, J.J., O. Serrano, J. Baldock, T. Cannard, P. Lavery, C.E. Lovelock, P. Macreadie, P. Masqué, N. Saintilan, and A.D.L. Steven. 2017. Technical review of opportunities for including blue carbon in the Australian Government’s Emissions Reduction Fund. Australia: CSIRO.

    Google Scholar 

  • Kirwan, M.L., and G.R. Guntenspergen. 2010. Influence of tidal range on the stability of coastal marshland. Journal of Geophysical Research. Earth Surface 115: 1–11. https://doi.org/10.1029/2009jf001400.

    Article  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60. https://doi.org/10.1038/nature12856.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., and S.M. Mudd. 2012. Response of salt-marsh carbon accumulation to climate change. Nature 489: 550–553. https://doi.org/10.1038/nature11440.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Faghe. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Clinical Practice Endocrinology & Metabolism 6: 253–260. https://doi.org/10.1038/nclimate2909.

    Article  Google Scholar 

  • Kolker, A.S., M.L. Kirwan, S.L. Goodbred, and J.K. Cochran. 2010. Global climate changes recorded in coastal wetland sediments: Empirical observations linked to theoretical predictions. Geophysical Research Letters 37: 1–5. https://doi.org/10.1029/2010GL043874.

    Article  Google Scholar 

  • Krishnaswamy, S., D. Lal, J.M. Martin, and M. Meybeck. 1971. Geochronology of lake sediments. Earth and Planetary Science Letters 11: 407–414.

    Article  CAS  Google Scholar 

  • Krauss, K.W., K.L. McKee, C.E. Lovelock, D.R. Cahoon, N. Saintilan, R. Reef, and L. Chen. 2014. How mangrove forests adjust to rising sea level. New Phytologist 202: 19–34. https://doi.org/10.1111/nph.12605.

    Article  Google Scholar 

  • Krone, R.B. 1987. A method for simulating historic marsh elevations, in: Krause, N.C. (Ed.), Coastal Sediments. American Society of Civil Engineers. New Orleans, LA.

  • Kumbier, K., M.G. Hughes, K. Rogers, and C.D. Woodroffe. 2021. Inundation characteristics of mangrove and saltmarsh in micro-tidal estuaries. Estuarine, Coastal and Shelf Science 261: 107553. https://doi.org/10.1016/j.ecss.2021.107553.

    Article  Google Scholar 

  • Lambeck, K. 2002. Sea level change from mid Holocene to recent time: An Australian example with global implications. Ice Sheets, Sea Lev. Dyn. Earth. https://doi.org/10.1029/GD029p0033.

  • Langley, J.A., M.V. Sigrist, J. Duls, D.R. Cahoon, J.C. Lynch, and J.P. Megonigal. 2009. Global change and marsh elevation dynamics: Experimenting where land meets sea and biology meets geology. Smithsonian Contributions to the Marine Sciences 38: 391–400. https://doi.org/10.5479/si.01960768.38.391.

    Article  Google Scholar 

  • Leslie, C., and G.J. Hancock. 2008. Estimating the date corresponding to the horizon of the first detection of 137Cs and 239+240Pu in sediment cores. Journal of Environmental Radioactivity 99: 483–490. https://doi.org/10.1016/j.jenvrad.2007.08.016.

    Article  CAS  Google Scholar 

  • Lewis, S.E., C.R. Sloss, C.V. Murray-Wallace, C.D. Woodroffe, and S.G. Smithers. 2013. Post-glacial sea-level changes around the Australian margin: A review. Quaternary Science Reviews 74: 115–138. https://doi.org/10.1016/j.quascirev.2012.09.006.

    Article  Google Scholar 

  • Long, A. 2001. Mid-Holocene sea-level change and coastal evolution. Progress in Physical Geography 25: 399–408. https://doi.org/10.1177/030913330102500307.

    Article  Google Scholar 

  • Lovelock, C.E., V. Bennion, A. Grinham, and D.R. Cahoon. 2011. The role of surface and subsurface processes in keeping pace with sea-level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14: 745–757. https://doi.org/10.1007/s10021-011-9443-9.

    Article  CAS  Google Scholar 

  • Lynch, J.C., P. Hensel, D.R. Cahoon. 2015. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics. Natural Resource Report NPS/NCBN/NRR. National Park Service, Fort Collins, Colorado.

  • Macreadie, P.I., K. Allen, B.P. Kelaher, P.J. Ralph, and C.G. Skilbeck. 2012. Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Global Change Biology 18: 891–901. https://doi.org/10.1111/j.1365-2486.2011.02582.x.

    Article  Google Scholar 

  • Marshall, W.A., W.R. Gehrels, M.H. Garnett, S.P.H.T. Freeman, C. Maden, and S. Xu. 2007. The use of ‘bomb spike’ calibration and high-precision AMS 14C analyses to date salt-marsh sediments deposited during the past three centuries. Quaternary Research 68: 325–337. https://doi.org/10.1016/j.yqres.2007.07.005.

    Article  CAS  Google Scholar 

  • McKee, K.L. 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483. https://doi.org/10.1016/j.ecss.2010.05.001.

    Article  Google Scholar 

  • McKee, K.L., D.R. Cahoon, and I.C. Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556. https://doi.org/10.1111/j.1466-8238.2007.00317.x.

    Article  Google Scholar 

  • MHL. 2012. OEH NSW Tidal Planes Analysis: 1990–2010 Harmonic Analysis.

  • Mogensen, L.A., and K. Rogers. 2018. Validation and comparison of a model of the effect of sea-level rise on coastal wetlands. Science and Reports 8: 1–14. https://doi.org/10.1038/s41598-018-19695-2.

    Article  CAS  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.

    Article  Google Scholar 

  • Mudd, S.M., S.M. Howell, and J.T. Morris. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82: 377–389. https://doi.org/10.1016/j.ecss.2009.01.028.

    Article  CAS  Google Scholar 

  • Murray-Wallace, C.V., and C.D. Woodroffe. 2014. Quaternary sea-level changes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • NSW DPIE. 2019. NSW Land use 2017.

  • Oliver, T.S.N., K. Rogers, C.J. Chafer, and C.D. Woodroffe. 2012. Measuring, mapping and modelling: An integrated approach to the management of mangrove and saltmarsh in the Minnamurra River estuary, southeast Australia. Wetlands Ecology and Management 20: 353–371. https://doi.org/10.1007/s11273-012-9258-2.

    Article  Google Scholar 

  • Parkinson, R.W., C. Craft, R.D. Delaune, J.F. Donoghue, M. Kearney, J.F. Meeder, J. Morris, and R.E. Turner. 2017. Marsh vulnerability to sea-level rise. Nature Clinical Practice Endocrinology & Metabolism 7: 756. https://doi.org/10.1038/nclimate3424.

    Article  Google Scholar 

  • Peng, F., X. Deng, and X. Cheng. 2022. Australian coastal sea level trends over 16 yr of reprocessed Jason Altimeter 20-Hz data sets. J. Geophys. Res. Ocean. 127: 1–18. https://doi.org/10.1029/2021JC018145.

    Article  Google Scholar 

  • Pethick, J.S. 1981. Long-term accretion rates on tidal salt marshes. Journal of Sedimentary Petrology 51: 571–577. https://doi.org/10.1306/212F7CDE-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Rogers, K. 2021. Accommodation space as a framework for assessing the response of mangroves to relative sea-level rise. Singapore Journal of Tropical Geography 42: 163–183. https://doi.org/10.1111/sjtg.12357.

    Article  Google Scholar 

  • Rogers, K., and K.W. Krauss. 2019. Moving from generalisations to specificity about mangrove–Saltmarsh dynamics. Wetlands 39: 1155–1178. https://doi.org/10.1007/s13157-018-1067-9.

    Article  Google Scholar 

  • Rogers, K., and N. Saintilan. 2021. Processes influencing autocompaction modulate coastal wetland surface elevation adjustment with sea-level rise. Frontiers in Marine Science 8: 1–18. https://doi.org/10.3389/fmars.2021.694039.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, and D.R. Cahoon. 2005a. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay. Australia. Wetl. Ecol. Manag. 13: 587–598. https://doi.org/10.1007/s11273-004-0003-3.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, and H. Heijnis. 2005b. Mangrove encroachment of saltmarsh in Western Port Bay, Victoria: The role of sedimentation, subsidence, and sea level rise. Estuaries 28: 551–559.

    Article  Google Scholar 

  • Rogers, K., K.M. Wilton, and N. Saintilan. 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science 66: 559–569. https://doi.org/10.1016/j.ecss.2005.11.004.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, and C. Copeland. 2012. Modelling wetland surface elevation dynamics and its application to forecasting the effects of sea-level rise on estuarine wetlands. Ecological Modelling 244: 148–157. https://doi.org/10.1016/j.ecolmodel.2012.06.014.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, and C.D. Woodroffe. 2014. Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: Implications for coastal wetland response to climate change. Estuarine, Coastal and Shelf Science 149: 46–56. https://doi.org/10.1016/j.ecss.2014.07.009.

    Article  Google Scholar 

  • Rogers, K., J.J. Kelleway, N. Saintilan, J.P. Megonigal, J.B. Adams, J.R. Holmquist, M. Lu, L. Schile-Beers, A. Zawadzki, D. Mazumder, and C.D. Woodroffe. 2019a. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature. https://doi.org/10.1038/s41586-019-0951-7.

    Article  Google Scholar 

  • Rogers, K., A. Zawadzki, L.A. Mogensen, and N. Saintilan. 2022. Coastal wetland surface elevation change is dynamically related to accommodation space and influenced by sedimentation and sea-level rise over decadal timescales. Frontiers in Marine Science 9: 1–20. https://doi.org/10.3389/fmars.2022.807588.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, D. Mazumder, and J.J. Kelleway. 2019b. Mangrove dynamics and blue carbon sequestration. Biology Letters 15. https://doi.org/10.1098/rsbl.2018.0471.

  • Roy, P.S., R.J. Williams, A.R. Jones, I. Yassini, P.J. Gibbs, B. Coates, R.J. West, P.R. Scanes, J.P. Hudson, and S. Nichol. 2001. Structure and function of South-east Australian estuaries. Estuarine, Coastal and Shelf Science 53: 351–384. https://doi.org/10.1006/ecss.2001.0796.

    Article  Google Scholar 

  • Saintilan, N., N.C. Wilson, K. Rogers, A. Rajkaran, and K.W. Krauss. 2013. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20: 147–157. https://doi.org/10.1111/gcb.12341.

    Article  Google Scholar 

  • Saintilan, N., L. Lymburner, L. Wen, I.D. Haigh, E. Ai, J.J. Kelleway, K. Rogers, T.D. Pham, and R. Lucas. 2022b. The lunar nodal cycle controls mangrove canopy cover on the Australian continent. Science Advances 8: 1–12. https://doi.org/10.1126/sciadv.abo6602.

    Article  CAS  Google Scholar 

  • Saintilan, N., K. Rogers, and A. Howe. 2009. Geomorphology and habitat dynamics, in: Saintilan, N., K. Rogers, and A. Howe. (Eds.), Australian Saltmarsh Ecology. CSIRO Publishing, Collingwood.

  • Saintilan, N., N.S. Khan, E. Ashe, J.J. Kelleway, K. Rogers, C.D. Woodroffe, and B.P. Horton. 2020. Thresholds of mangrove survival under rapid sea level rise. Science (80-. ). 368, 1118–1121. https://doi.org/10.1126/science.aba2656.

  • Saintilan, N., K.E. Kovalenko, G. Guntenspergen, K. Rogers, J.C. Lynch, D.R. Cahoon, C.E. Lovelock, D.A. Friess, E. Ashe, K.W. Krauss, N. Cormier, T. Spencer, J. Adams, J. Raw, C. Ibanez, F. Scarton, S. Temmerman, P. Meire, T. Maris, K. Thorne, J. Brazner, G.L. Chmura, T. Bowron, V.P. Gamage, K. Cressman, C. Endris, C. Marconi, P. Marcum, K. St. Laurent, W. Reay, K.B. Raposa, J.A. Garwood, and N. Khan. 2022a. Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science (80-. ). 377, 523–527. https://doi.org/10.1126/science.abo7872.

  • Sanders, C.J., I.R. Santos, D.T. Maher, J.L. Breithaupt, J.M. Smoak, M. Ketterer, M. Call, L. Sanders, and B.D. Eyre. 2016. Examining 239+240Pu, 210Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay. Australian Journal of Environmental Radioactivity 151: 623–629. https://doi.org/10.1016/j.jenvrad.2015.04.018.

    Article  CAS  Google Scholar 

  • Sasmito, S.D., D. Murdiyarso, D.A. Friess, and S. Kurnianto. 2016. Can mangroves keep pace with contemporary sea level rise? A global data review. Wetlands Ecology and Management 24: 263–278. https://doi.org/10.1007/s11273-015-9466-7.

    Article  Google Scholar 

  • Schile, L.M., J.C. Callaway, J.T. Morris, D. Stralberg, V. Thomas Parker, and M. Kelly. 2014. Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS One 9. https://doi.org/10.1371/journal.pone.0088760.

  • Schuerch, M., T. Spencer, S. Temmerman, M.L. Kirwan, C. Wolff, D. Lincke, C.J. McOwen, et al. 2018. Future response of global coastal wetlands to sea-level rise. Nature 561: 231–234. Springer US. https://doi.org/10.1038/s41586-018-0476-5.

  • Sloss, C.R., C.V. Murray-Wallace, and B.G. Jones. 2007. Holocene sea-level change on the southeast coast of Australia: A review. The Holocene 17: 999–1014. https://doi.org/10.1177/0959683607082415.

    Article  Google Scholar 

  • Stagg, C.L., K.W. Krauss, D.R. Cahoon, N. Cormier, W.H. Conner, and C.M. Swarzenski. 2016. Processes contributing to resilience of coastal wetlands to sea-level rise. Ecosystems 19: 1445–1459. https://doi.org/10.1007/s10021-016-0015-x.

    Article  CAS  Google Scholar 

  • Swales, A., S.J. Bentley, and C.E. Lovelock. 2015. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change? Earth Surf. Process. Landforms 40: 1672–1687. https://doi.org/10.1002/esp.3759.

    Article  Google Scholar 

  • Swanson, K.M., J.Z. Drexler, D.H. Schoellhamer, K.M. Thorne, M.L. Casazza, C.T. Overton, J.C. Callaway, and J.Y. Takekawa. 2014. Wetland accretion rate model of ecosystem resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco estuary. Estuaries and Coasts 37: 476–492. https://doi.org/10.1007/s12237-013-9694-0.

    Article  Google Scholar 

  • Temmerman, S., G. Govers, S. Wartel, and P. Meire. 2003. Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, scheldt estuary, Belgium. SW Netherlands. Earth Surf. Process. Landforms 28: 739–755. https://doi.org/10.1002/esp.495.

    Article  Google Scholar 

  • Webb, E.L., D.A. Friess, K.W. Krauss, D.R. Cahoon, G.R. Guntenspergen, and J. Phelps. 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Clinical Practice Endocrinology & Metabolism 3: 458–465. https://doi.org/10.1038/nclimate1756.

    Article  Google Scholar 

  • Whelan, K.R.T., T.J. Smith, D.R. Cahoon, J.C. Lynch, and G.H. Anderson. 2005. Groundwater control of mangrove surface elevation: Shrink and swell varies with soil depth. Estuaries 28: 833–843. https://doi.org/10.1007/BF02696013.

    Article  Google Scholar 

  • Whelan, K.R.T., T.J. Smith, G.H. Anderson, and M.L. Ouellette. 2009. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29: 16–23. https://doi.org/10.1672/08-125.1.

    Article  Google Scholar 

  • White, N.J., I.D. Haigh, J. Church, and a., Koen, T., Watson, C.S., Pritchard, T.R., Watson, P.J., Burgette, R.J., McInnes, K.L., You, Z.-J., Zhang, X., Tregoning, P.,. 2014. Australian sea levels—Trends, regional variability and influencing factors. Earth-Science Review 136: 155–174. https://doi.org/10.1016/j.earscirev.2014.05.011.

    Article  Google Scholar 

  • Whitt, A.A., R. Coleman, C.E. Lovelock, C. Gillies, D. Ierodiaconou, M. Liyanapathirana, and P.I. Macreadie. 2020. March of the mangroves: Drivers of encroachment into southern temperate saltmarsh. Estuarine, Coastal and Shelf Science 240: 106776. https://doi.org/10.1016/j.ecss.2020.106776.

    Article  Google Scholar 

  • Woodroffe, C.D., K. Rogers, K.L. McKee, C.E. Lovelock, I.A. Mendelssohn, and N. Saintilan. 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science 8, annurev-marine-122414–034025. https://doi.org/10.1146/annurev-marine-122414-034025.

Download references

Acknowledgements

The authors acknowledge the Jerrinja Tribal People and their country. We recognise their custodianship of Comerong Island and the Shoalhaven River for millennia when sea level was both higher and lower than its present level. This study was facilitated by the NSW National Parks and Wildlife Service, who manage the Comerong Island estate. We also recognise the support of students and field technicians with the installation of the network of SETs and coring.

Funding

This study was funded by the Australian Research Council Future Fellowship provided to Rogers (FT130100532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti K. Lal.

Additional information

Communicated by Meagan Eagle

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 586 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, K.K., Woodroffe, C.D., Zawadzki, A. et al. Coastal Wetland Elevation Dynamics, Sedimentation, and Accommodation Space Across Timescales. Estuaries and Coasts (2023). https://doi.org/10.1007/s12237-023-01308-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-023-01308-5

Keywords

Navigation