Skip to main content
Log in

Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel high-tillering dwarf mutant in common wheat Wangshuibai was characterized and mapped to facilitate breeding for plant height and tiller and the future cloning of the causal gene.

Abstract

Tiller number and plant height are two major agronomic traits in cereal crops affecting plant architecture and grain yield. NAUH167, a mutant of common wheat landrace Wangshuibai induced by ethylmethyl sulfide (EMS) treatment, exhibits higher tiller number and reduced plant height. Microscope observation showed that the dwarf phenotype was attributed to the decrease in the number of cells and their length. The same as the wild type, the mutant was sensitive to exogenous gibberellins. Genetic analysis showed that the high-tillering number and dwarf phenotype were related and controlled by a partial recessive gene. Using a RIL2:6 population derived from the cross NAUH167/Sumai3, a molecular marker-based genetic map was constructed. The map consisted of 283 loci, spanning a total length of 1007.98 cM with an average markers interval of 3.56 cM. By composite interval mapping, a stable major QTL designated QHt.nau-2D controlling both traits, was mapped to the short arm of chromosome 2D flanked by markers Xcfd11 and Xgpw361. To further map the QHt.nau-2D loci, another population consisted of 180 F2 progeny from a cross 2011I-78/NAUH167 was constructed. Finally, QHt.nau-2D was located within a genetic region of 0.8 cM between markers QHT239 and QHT187 covering a predicted physical distance of 6.77 Mb. This research laid the foundation for map-based cloning of QHt.nau-2D and would facilitate the characterization of plant height and tiller number in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abràmoff MD, Magalhǎes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nat Protoc 2:2649–2654

    Article  CAS  PubMed  Google Scholar 

  • Borner A, Roder M, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133–1137

    Article  CAS  Google Scholar 

  • Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Chen L, Phillips AL, Condon AG, Parry MA, Hu YG (2013) GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat. PLoS ONE 8:e62285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SL, Gao RH, Wang HY, Wen MX, Xiao J, Bian NF, Zhang RQ, Hu WJ, Cheng SH, Bie TD, Wang XE (2015) Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica 203:583–594

    Article  Google Scholar 

  • Cui F, Ding A, Li J, Zhao C, Wang L, Wang X, Qi X, Li X, Li G, Gao J, Wang H (2011) QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica 186:177–192

    Article  Google Scholar 

  • Daoura BG, Chen L, Du YY, Hu YG (2014) Genetic effects of dwarfing gene Rht-5 on agronomic traits in common wheat (Triticum aestivum L.) and QTL analysis on its linked traits. Field Crop Res 156:22–29

    Article  Google Scholar 

  • Doebley J, Wang RL (1997) Genetics and the evolution of plant form: an example from maize. Cold Spring Harb Symp Quant Biol 62:361–367

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Wu J, Liu Y, Xiao J, Zhao G, Gu Y, Jia J, Kong X (2012) New cis-regulatory elements in the Rht-D1b locus region of wheat. Funct Integr Genom 12:489–500

    Article  CAS  Google Scholar 

  • Ellis MH, Rebetzke GJ, Chandler P, Bonnett D, Spielmeyer W, Richards RA (2004) The effect of different height reducing genes on the early growth of wheat. Funct Plant Biol 31:583–589

    Article  CAS  Google Scholar 

  • Gale MD, Youssefian S, Russell G (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding. Butterworths and Co, London, pp 1–35

    Chapter  Google Scholar 

  • Gallagher JN, Biscoe PV (1978) Radiation absorbtion, growth and yield of cereals. J Agric Sci 91:47–60

    Article  Google Scholar 

  • Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S (2012) Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot 63:4419–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    Article  CAS  PubMed  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang YK, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed 29:159–171

    Article  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels R, Pfeifer M, Tao Y, Zhang XY, Jing RL, Zhang C, Ma YZ, Gao LF, Gao C, Spannagl M, Mayer KFX, Li D, Pan SK, Zheng FY, Hu Q, Xia XC, Li JW, Liang QS, Chen J, Wicker T, Gou CY, Kuang HH, He GY, Luo YD, Keller B, Xia QJ, Lu P, Wang JY, Zou HF, Zhang RZ, Xu JY, Gao JL, Middleton C, Quan ZW, Liu GM, Wang J, Yang HM, Liu X, He ZH, Mao L, Wang J, Consor IWGS (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Korzun V, Roder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kowalski AM, Gooding M, Ferrante A, Slafer GA, Orford S, Gasperini D, Griffiths S (2016) Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. Field Crops Res 191:150–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  • Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294

    Article  CAS  PubMed  Google Scholar 

  • Lanahan MB, Ho THD (1988) Slender barley—a constitutive gibberellin-response mutant. Planta 175:107–114

    Article  CAS  PubMed  Google Scholar 

  • Lanning SP, Martin JM, Stougaard RN, Guillen-Portal FR, Blake NK, Sherman JD, Robbins AM, Kephart KD, Lamb P, Carlson GR, Pumphrey M, Talbert LE (2012) Evaluation of near-isogenic lines for three height-reducing genes in hard red spring wheat. Crop Sci 52:1145–1152

    Article  Google Scholar 

  • Law CN (1967) The location of genetic factors controlling a number of quantitative characters in wheat. Genetics 56:445–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366

    Article  CAS  Google Scholar 

  • Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY (2003) Control of tillering in rice. Nature 422:618–621

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Peng T, Xie Q, Han S, Tian J (2010) Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations. J Genet 89:409–415

    Article  PubMed  Google Scholar 

  • Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X (2012) A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol 196:282–291

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Xing L, Xing S, Hu P, Cui C, Zhang M, Xiao J, Wang H, Zhang R, Wang X, Chen P, Cao A (2015) Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivum L.). J Genet Genom 42:685–698

    Article  Google Scholar 

  • Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KF, Sehgal SK, Li W, Gill BS, Bevan MW, Simkova H, Dolezel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat d-genome progenitor. Proc Natl Acad Sci USA 110:7940–7945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia X (2013) Catalogue of gene symbols for wheat. Proceedings of 12th International wheat genetics Symposium, Yokohama

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naruoka Y, Talbert LE, Lanning SP, Blake NK, Martin JM, Sherman JD (2011) Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet 123:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Norusis M (2008) SPSS 16.0 Guide to data analysis. Prentice Hall Press, Englewood Cliffs

    Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Peng ZS, Yen C, Yang JL (1998) Genetic control of oligo-culms character in common wheat. Wheat Inf Serv 86:19–24

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Pestsova E, Roder M (2002) Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet 106:84–91

    Article  CAS  PubMed  Google Scholar 

  • Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the d genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Rebetzke GJ, Richards RA (2000) Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Aust J Agric Res 51:235–245

    Article  CAS  Google Scholar 

  • Sial AM, Javed MA, Jamali K (2002) Genetic impact of dwarfing genes (Rht1 and Rht2) for improving grain yield in wheat. Asian J Plant Sci 1:254–256

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4 Software for the calculationof genetic linkage maps in experimental populations. Kyazma BV, Wageningen

  • Wang YH, Li JY (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Liu Y, Shi H, Mo H, Wu F, Lin Y, Gao S, Wang J, Wei Y, Liu C, Zheng Y (2016) Identification and validation of novel low-tiller number QTL in common wheat. Theor Appl Genet 129:603–612

    Article  CAS  PubMed  Google Scholar 

  • White EM, Wilson FEA (2006) Responses of grain yield, biomass and harvest index and their rates of genetic progress to nitrogen availability in ten winter wheat varieties. Ir J Agric Food Res 45:85–101

    Google Scholar 

  • Worland AJ, Korzun V, Roder MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    Article  CAS  Google Scholar 

  • Xie Y, Long H, Hou Y, Zheng Y (2006) Inheritance analysis of correlative characters of a oligoculm wheat line H461. J Triticeae Crop 26:21–23

    Google Scholar 

  • Xue SL, Zhang ZZ, Lin F, Kong ZX, Cao Y, Li CJ, Yi HY, Mei MF, Zhu HL, Wu J, Xu HB, Zhao DM, Tian DG, Zhang CQ, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  CAS  PubMed  Google Scholar 

  • Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97:267–274

    Article  CAS  Google Scholar 

  • Yan J, Zhang LL, Wan B, Gou JB, Wang YC, Xu CM, Fahmina T, Cheng JP (2011) QTL mapping of spike traits in population of recombinant inbred lines between durum wheat × wild emmer wheat. J Sichuan Agric Univ 29:147–153

    Google Scholar 

  • Zhang XK, Yang SJ, Zhou Y, He ZH, Xia XC (2006) Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica 152:109–116

    Article  CAS  Google Scholar 

  • Zhang B, Tian F, Tan L, Xie D, Sun C (2011) Characterization of a novel high-tillering dwarf 3 mutant in rice. J Genet Genom 38:411–418

    Article  Google Scholar 

  • Zhang JP, Wu J, Liu WH, Lu X, Yang XM, Gao AN, Li XQ, Lu YQ, Li LH (2013) Genetic mapping of a fertile tiller inhibition gene, ftin, in wheat. Mol Breeding 31(2):441–449

    Article  CAS  Google Scholar 

  • Zhou M, Ren L, Zhang X, Yu G, Ma H, Lu W (2006) Analysis of QTLs for yield traits of wheat. J Triticeae Crop 26:35–40

    Google Scholar 

Download references

Author contribution statement

WHY and WXE designed experimental plan. XT, BNF, WMX and YCX performed all experiments. XJ and CAZ designed the EST-PCR markers. ZSZ managed the materials in the field. XT, WHY and WXE wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We gratefully thank Dr. J. Dvorak (University of California, Davis) for the kindly provision of Chinese Spring (CS) substitution line and Dr. MC Luo (University of California, Davis) for the provision of the 2DS genomic sequence of Ae. tauschii and many important advices. This research was supported by the Funds for National Key Research and Development Program (Grant No. 2016YFD0100302), International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 31661143005), the Technology Support Program of Jiangsu Province (Grant no. BE2013439), Jiangsu Agricultural Science and Technology Innovation Fund (CX151001), the Program of Introducing Talents of Discipline to Universities (No. B08025), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Six Talent Peaks project in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiue Wang or Haiyan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Dubcovsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1962 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Bian, N., Wen, M. et al. Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant. Theor Appl Genet 130, 483–494 (2017). https://doi.org/10.1007/s00122-016-2828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2828-6

Keywords

Navigation