Skip to main content
Log in

Identification and validation of novel low-tiller number QTL in common wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

SNP-based QTL mapping provided useful information for novel loci that can be used in breeding programs to control tillering and improve yield in wheat via marker-assisted selection.

Abstract

Tillering is one of the most important agronomic traits affecting biomass and grain yield potential in wheat. Wheat lines with very limited tillering capacity are more productive than free-tillering lines under severe drought conditions. In this study, three recombinant inbred line (RIL) populations were generated and used, having H461, a low-tillering genotype, as a common parent. A linkage map containing 7808 single nucleotide polymorphism loci was constructed on the basis of H461/CN16 RIL population. Three QTL controlling low tillering were identified on Chromosome (Chr.) 2D (Qltn.sicau-2D), Chr. 2B (Qltn.sicau-2B), and Chr. 5A (Qltn.sicau-5A). Qltn.sicau-2D, Qltn.sicau-2B, and Qltn.sicau-5A explained up to 19.1, 14.6, and 9.6 % of the phenotypic variance, respectively. Comparing with previous findings, Qltn.sicau-2D and Qltn.sicau-2B should thus be novel tillering QTL. The effects of these QTL were further validated in two additional RIL populations. Significant effects of Qltn.sicau-2D were detected across all growth stages in different genetic backgrounds, making it an ideal target for breeding programs as well as for further characterization of the gene(s) underlying this locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam MM, Tanaka T, Nakamura T et al (2015) Overexpression of rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought and increases photosynthesis and tiller number. Plant Biotechnol J 16:85–96

    Article  Google Scholar 

  • Babb S, Muehlabuer GJ (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor Appl Genet 106:846–857

    CAS  PubMed  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB et al (2005) QTL Cartographer, Version 1.17. Statistical Genetics Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC

  • Blanco A, Simeone R, Cenci A et al (2004) Extension of the messapia × dicoccoides linkage map of Triticum turgidum (L.) Thell. Cell Mol Biol Lett 9(3):529–541

    CAS  PubMed  Google Scholar 

  • Cui F, Ding AM, Li J et al (2011) QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL population. Euphytical 181(1):177–192

    Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S, Boddu J, Muehlbauer GJ (2009) The genetics of barley low-tillering mutants: absent lower laterals (als). Theor Appl Genet 118:1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S et al (2010) The genetics of barley low-tillering mutants: low number of tillers-a (lnt 1). Theor Appl Genet 121(4):705–715

    Article  CAS  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17(13):385–403

    Article  Google Scholar 

  • Donald CM (1979) A barley breeding program based on an ideotype. J Agric Sci 93:261–269

    Article  Google Scholar 

  • Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    Article  CAS  PubMed  Google Scholar 

  • Han YH, Khu D-M (2012) High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.). Mol Breed 29:489–501

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW et al (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat Triticum aestivum L.). Theor Appl Genet 106(8):1379–1389

    CAS  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kebrom TH, Chandler PM, Swain SM (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160:308–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Law CN et al (1967) The location of genetic factors controlling a number of quantitative characters in wheat. Genetics 56(3):445–461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li WL, Nelson JC, Chu CY et al (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naruoka Y, Talbert LE, Lanning SP et al (2011) Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet 123:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M et al (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107(7):1234–1242

    Article  Google Scholar 

  • Peng ZS (1998) Evaluation of special germplasm resources in triticeae. Sci Agric Sin 65–89

  • Richards RA (1988) A tiller inhibitor gene in wheat and its effect on plant growth. Aust J Agric Res 39:749–757

    Article  Google Scholar 

  • Roder MS, Korzun V, Wendehake K et al (1998) A microsatellite map of wheat. Genetics 149(4):2007–2023

  • Smith S, Kuehl R, Ray I et al (1998) Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes. Crop Sci 38:1125–1129

    Article  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46(4):555–564

    Article  CAS  PubMed  Google Scholar 

  • Sorrells ME, Gustafson JP, Somers D et al (2011) Reconstruction of the synthetic W7984 × Opata M85 wheat reference population. Genome 54(11):875–882

    Article  PubMed  Google Scholar 

  • Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Supriya A, Senthilvel S, Nepolean T et al (2011) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123:239–250

    Article  CAS  PubMed  Google Scholar 

  • Tavakol E, Okagaki R, Verderio G et al (2015) The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-like protein that controls tillering and leaf patterning. Plant Physiol 168(1):164–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL version 5.0, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4.0, software for the calculation of genetic linkage maps in experimental populations. Kyazama BV, Wageningen

    Google Scholar 

  • Vasu Kuraparthy, Sood Shipa, Dhaliwal HS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294

    Google Scholar 

  • Wang S, Wong D, Ke Forrest et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie Y, Long h, Hou YC et al (2006) Inheritance analysis of correlative characters of a oligoculm wheat line H461. J Triticeae Crop 26:21–23

    Google Scholar 

  • Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan JQ, Zhu J, He C, Benmoussa M, Wu P (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97:267–274

    Article  CAS  Google Scholar 

  • Yan J, Zhang LL, Wan B et al (2011) QTL mapping of spike traits in population of recombinant inbred lines between durum wheat × wild emmer wheat. J Sichuan Agric Univ 29(2):147–153

  • Yang WY, Tu NM et al (2011) The theory of crop cultivation. Chinese Agriculture Press, Beijing

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 4(6):415–421

    Article  Google Scholar 

  • Zhang XY, Gao YN (2004) To design PCR primers with Oligo 6 and primer premier 5. China J Bioinform 2:14–18

    Google Scholar 

  • Zhou MP, Ren LJ, Zhang X et al (2006) Analysis of QTLs for yield traits of wheat. J Triticeae Crop 26(4):35–40

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31301317) and the International Science and Technology Cooperation Program of China (No. 2015DFA30600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaxi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by G. Muehlbauer.

Z. Wang and H. Shi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1: The frequency of tiller number in H461/CN16 population (PDF 288 kb)

122_2015_2652_MOESM2_ESM.pdf

Figure S2: Linkage maps constructed using a recombination inbred line population derived from H461/CN16 on chromosome A (PDF 728 kb)

122_2015_2652_MOESM3_ESM.pdf

Figure S3: Linkage maps constructed using a recombination inbred line population derived from H461/CN16 on chromosome B (PDF 771 kb)

122_2015_2652_MOESM4_ESM.pdf

Figure S4: Linkage maps constructed using a recombination inbred line population derived from H461/CN16 on chromosome D (PDF 305 kb)

Figure S5: The new genetic linkage map with Xgwm539 (PDF 135 kb)

122_2015_2652_MOESM6_ESM.pdf

Table S1: Co-located loci not listed on the linkage map and their corresponding chromosome (Chr) and loci on the map (PDF 712 kb)

Table S2: QTL x environmental interaction by the mixed linear-model approach for the tiller (PDF 183 kb)

Table S3: Information for HRM markers developed based on the linkage SNP markers (PDF 185 kb)

Table S4: Effects of Qltn.sicau-2B in two validation populations (PDF 237 kb)

Table S5: Effects of Qltn.sicau-5A in two validation populations (PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, Y., Shi, H. et al. Identification and validation of novel low-tiller number QTL in common wheat. Theor Appl Genet 129, 603–612 (2016). https://doi.org/10.1007/s00122-015-2652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2652-4

Keywords

Navigation