Skip to main content
Log in

Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract.

Advanced backcross QTL (AB-QTL) analysis was used to identify quantitative trait loci (QTLs) for yield and yield components in a BC2F2 population derived from a cross between the German winter wheat variety 'Prinz' and the synthetic wheat line W-7984 developed by CIMMYT. Two hundred and ten microsatellite markers were employed to genotype 72 pre-selected BC2F2 plants and phenotypic data were collected for five agronomic traits from corresponding BC2F3 families that were grown at four locations in Germany. Using single-marker regression and interval mapping, a total of 40 putative QTLs derived from W-7984 were detected, of which 11 were for yield, 16 for yield components, eight for ear emergence time and five for plant height. For 24 (60.0%) of them, alleles from the synthetic wheat W-7984 were associated with a positive effect on agronomic traits, despite the fact that synthetic wheat was overall inferior with respect to agronomic appearance and performance. The present study indicated that favorable QTL alleles could be transferred from wild relatives of wheat into an elite wheat variety for improvement of quantitative trait loci like yield by the advanced backcross QTL strategy and molecular breeding. To our knowledge, the results presented here were the first report on AB-QTL analysis in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    CAS  Google Scholar 

  • Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826

    Article  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping QTLs controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed 3:29–38

    CAS  Google Scholar 

  • Börner A, Worland AJ, Plaschke J, Schumann E, Law CN (1993) Pleiotropic effects of genes for reduced height (Rht) and day length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breed 111:204–216

    Google Scholar 

  • Börner A, Röder M, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133–1137

    CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933–940

    CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group-7 chromosomes. Theor Appl Genet 78:495–504

    CAS  Google Scholar 

  • Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84:567–572

    Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    CAS  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997a) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Nelson JC, Tanksley SD (1997b) Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet 95:895–902

    CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000a) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407–414

    Article  CAS  Google Scholar 

  • Huang XQ, Zeller FJ, Hsam SLK, Wenzel G, Mohler V (2000b) Chromosomal location of AFLP markers in common wheat (Triticum aestivum L.) utilizing nulli-tetrasomic stocks. Genome 43:298–305

    CAS  PubMed  Google Scholar 

  • Huang XQ, Röder MS, Pestsova E, Börner A, Ganal MW (2001) Development and use of wheat microsatellite markers for the characterization of germplasm of hexaploid wheat (Triticum aestivum L.). In: the Plant and Animal Genome IX Conference, January 13–17, 2001, San Diego, California, USA, p 260

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers.Theor Appl Genet 105:699–707

    CAS  Google Scholar 

  • Huang XQ, Wang LX, Xu MX, Röder MS (2003) Microsatellite mapping of the wheat powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet (in press)

  • Hyne V, Kearsey MJ, Martinez O, Gang W, Snape JW (1994) A partial genome assay for quantitative trait loci in wheat (Triticum aestivum) using different analytical techniques. Theor Appl Genet 89:735–741

    CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kihara H (1944) Die Entdeckung des DD Analysators beim Weizen. Agric Hort 19:889–890

    Google Scholar 

  • Knot DR (1989) The wheat rusts: breeding for resistance. Monographs on Theoretical Applied Genetics 12, Springer-Verlag, Berlin

    Google Scholar 

  • Law CN (1967) The locations of genetic factors controlling a number of quantitative characters in wheat. Genetics 56:445–461

    Google Scholar 

  • Law CN, Wolfe MS (1966) Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol 8:462–470

    Google Scholar 

  • Law CN, Worland AJ, Giorgi B (1976) The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity 36:49–58

    Google Scholar 

  • Law CN, Snape JW, Worland AJ (1978) The genetic relationship between height and yield in wheat. Heredity 40:133–151

    Google Scholar 

  • Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92:920–927

    Article  CAS  Google Scholar 

  • Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003

    CAS  Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156

    Google Scholar 

  • Marino C, Nelson J, Lu Y, Sorrels M, Leroy P, Tuleen N, Lopes C, Hart G (1996) Molecular genetic maps of the group-6 chromosomes of hexaploid wheat (Triticum aestivum). Genome 39:359–366

    CAS  Google Scholar 

  • Moncada P, Martínez CP, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • Nelson J (1997) QGene: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    CAS  Google Scholar 

  • Nelson J, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995a) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533

    CAS  Google Scholar 

  • Nelson JC, Van Deynze A, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995b) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Pestsova E, Ganal WM, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  Google Scholar 

  • Röder MS, Korzun V, Gill BS Ganal MW (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998b) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed T, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Veldboom LR, Lee M (1994) Molecular-marker facilitated studies of morphological traits in maize. II. Determination of QTLs for grain yield and yield components. Theor Appl Genet 89:451–458

    CAS  Google Scholar 

  • Worland AJ, Korzun V, Röder MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    CAS  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244

    Article  CAS  Google Scholar 

  • Xiao JH, Li JM, Grandillo S, Ahn SN, Yuan LP, TanksleySD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

We thank E. Ebmeyer at Lochow-Petkus GmbH, H. Kempf at Saatzucht H. Schweiger, J. Breun at Saatzucht J. Breun and R. Schachschneider at Nordsaat Saatzucht GmbH for the field experiments and evaluations in this study, J. Schondelmaier in Saaten-Union Resistenzlabor GmbH for the coordination of this project, A. Heber for excellent technical assistance and Dr. G. H. Buck-Sorlin for assistance with the program Minitab to perform ANOVA. This research was supported by a grant from Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Röder.

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X.Q., Cöster, H., Ganal, M.W. et al. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106, 1379–1389 (2003). https://doi.org/10.1007/s00122-002-1179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-002-1179-7

Keywords.

Navigation